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Foreword vii

FOREWORD

There is little doubt that hepatocellular carcinoma is the new frontier in 
hepatology. It is a disease of global significance with a devastatingly poor 
prognosis and is characterized by modest therapeutic advances in the past 
20 years. Much more needs to be achieved in coming years if the burden of this 
disease is to be reduced. 

Liver cancer is an underappreciated cause of mortality on a global scale. Most 
hepatocellular carcinoma occurs in patients with already established liver disease. 
It is not surprising that there is marked regional variation in the burden of liver 
cancer given the geographical variation in the prevalence of liver disease, 
particularly viral hepatitis. Advances in the prevention and therapy of chronic 
viral hepatitis should have impact on the incidence of liver cancer - if these 
advances can be delivered to regions of greatest need. The emergence of non-
alcoholic fatty liver disease as an important contributor to the incidence of liver 
cancer is concerning, considering the scale of the modern obesity epidemic. It is 
overrepresented as an underlying cause in Europe, Australasia, and high-income 
North America - thus illustrating the ongoing need for public health and policy 
interventions to target those at risk.

In this context, it is important that emerging knowledge in the field of 
hepatocellular carcinoma is consolidated, such that scientists and clinicians are 
provided with an up-to-date overview of important, evolving themes. This book 
is a very important contribution, in part because it draws further attention to the 
need for much more work in the field. Early chapters on the cellular origin of 
hepatocellular carcinoma and the tumor microenvironment reflect the unique 
pathogenesis of this malignancy and the complex array of cellular forces driving 
malignant change. In vitro mouse models of hepatocellular carcinoma allow 
those factors to be dissected out and studied in great detail. The diagnosis 
and management of liver cancer will, for the foreseeable future, be based on 
multidisciplinary input, using the experience of physicians, surgeons, and 
radiologists. It is therefore appropriate that the latter chapters of this book discuss 
contemporary issues in the care of affected patients and the need for individualized 
decision-making, based on the characteristics of the tumor and the patient, 
including the features of the underlying liver disease.

This book is a very important read for those involved in basic and translational 
research, as well as for clinicians delivering care to affected patients. The editor 
and the authors are to be congratulated on their work.

Darrell Crawford, MD FRACP FAASLD
Mayne Professor of Medicine
The University of Queensland, Brisbane, Australia
October 2019

Geoffrey McCaughan, MBBS PHD FRACP FAAHS
A.W. Morrow Professor of Medicine

University of Sydney, Sydney, Australia
October 2019
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Preface ix

PREFACE

Hepatocellular carcinoma (HCC) has become a major global health problem and 
is responsible for a steadily increasing number of cancer-related deaths. It is the 
most common form of liver cancer, with large disparities in incidence due to the 
geographical variation in the prevalence of risk factors. The high incidence rates 
of HCC in Africa and Asia are mainly attributed to the dietary exposure to afla-
toxin B1 and chronic hepatitis B virus (HBV) infection. Western countries report 
fewer cases, with chronic hepatitis C virus (HCV) infection, alcohol abuse, meta-
bolic syndrome, and non-alcoholic fatty liver disease as dominant causes. 
Although the risk factors for HCC development are well known and great advances 
have been made through HBV vaccinations, direct-acting antivirals for HCV treat-
ment, and aflatoxin eradication programs, the overall incidence and mortality 
rates of HCC are still rising.

To tackle the burden of HCC, it is essential to understand the principle molec-
ular and cellular processes as well as fundamental clinical challenges. This book 
aims to provide an overview on several important disease aspects. Chapter 1 
reviews recent studies assessing the potential cellular origins of HCC. Chapter 2 
describes the newly discovered regulatory roles of the tumor microenvironment 
on tumor growth and progression, with particular focus on extracellular matrix 
factors. Important starting points in the long pipeline from drug discovery to 
clinical translation of potential treatments are appropriate and well-designed 
models of disease that enable a thorough understanding of context-specific mech-
anisms. The authors of Chapter 3 and Chapter 4 have therefore outlined the most 
commonly used in vitro systems and animal models of chronic liver disease and 
HCC in great detail. Non-alcoholic fatty liver disease and non-alcoholic steato-
hepatitis have been growing in prevalence worldwide at alarming rates. Hence, 
Chapter 5 provides an overview of metabolic reprogramming and dysregulation 
of lipid metabolism as a newly recognized hallmark of HCC. The last three chap-
ters focus on clinical aspects of HCC management and treatment. Chapter 6 
details the currently accepted standards and challenges for the surgical manage-
ment of HCC, while Chapter 7 provides an overview of the recent developments 
in the field of tyrosine kinase inhibitors, including survival benefits and adverse 
events. Finally, Chapter 8 discusses multidrug resistance to chemotherapy and 
potential approaches to overcome this remaining clinical obstacle.

Unmet clinical needs are most effectively addressed through close collabora-
tions between basic researchers and clinicians, thus effectively capitalizing on 
each other’s strengths and expertise. I therefore aimed to make this book of inter-
est to both scientists and clinicians and provide useful insights and stimulation for 
constructive discussions. This project would not have been possible without the 
hard work and commitment of all authors. I sincerely thank everyone for their 
valuable contributions.

Janina E.E. Tirnitz-Parker, MSc PhD
School of Pharmacy and Biomedical Sciences

Curtin Heath Innovation Research Institute
Curtin University, Western Australia

October 2019
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Abstract: Molecular features of hepatocellular carcinoma affect patient prognosis 
and treatment efficiency. This chapter provides an overview of the relevant studies 
conducted to identify the cell of origin of hepatocellular carcinoma with a special 
focus on the controversy of hepatocytes versus hepatic progenitors as the main 
tumor-initiating cell. Furthermore, we introduce the concept of cancer stem cells 
(CSCs) and highlight recent publications covering this topic in relation to liver 
cancer. More precisely, we concentrate on the origin of CSCs, discuss accepted 
markers and the need to define a consistent combination of them that can be uti-
lized to clearly define this heterogeneous cell type, summarize important signal-
ing pathways that govern the stemness, and describe state-of-the-art assays to 
isolate and evaluate CSCs. We focus on their contributions to oncogenesis and 
tumor heterogeneity, as well as their feature to resist chemo- and radiotherapy. 
Finally, the potential of using CSC markers for diagnostic purposes and therapeu-
tic approaches targeting these cells is addressed.

Keywords: cancer stem cells; cell of origin; CSC markers; hepatic progenitor 
cells; tumor-initiating cell
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INTRODUCTION

Liver cancer, with hepatocellular carcinoma (HCC) representing approximately 
90% of all cases, is the third leading cause of cancer-related deaths world-
wide (1, 2). The main risk factors for developing HCC are well known and include 
chronic liver damage caused by inflammation and fibrosis, alcohol abuse, infec-
tion by hepatitis B or hepatitis C virus, metabolic syndrome, and ingestion of the 
fungal metabolite aflatoxin B1(1). Therapeutic approaches include surgical resec-
tion, transarterial chemoembolization (TACE), local radiofrequency ablation 
(RFA), and organ transplantation (3). However, most cases of HCC are diagnosed 
at advanced stages for which efficient therapies are limited (4). Unresectable HCC 
cases are treated with sorafenib, a multikinase inhibitor, with modest survival 
benefits (5). It is commonly known that molecular features of HCC affect patient 
prognosis and treatment efficiency. For example, human HCC harboring vascular 
endothelial growth factor A (VEGFA) gene amplification is more sensitive to 
sorafenib treatment (6) and in vivo RNAi screening has identified Mapk14 as a 
target to overcome therapy resistance (7). Therefore, it is essential to comprehen-
sively elucidate the mechanisms underlying hepatocarcinogenesis. Over the past 
decade, there has been a considerable improvement in the understanding of the 
molecular pathogenesis of HCC (8, 9). The landscape of genetic alterations in 
HCC has been clearly characterized. High-level DNA amplifications were found 
in  chromosome 6p21 (VEGFA) and 11q13 (fibroblast growth factor, FGF19; 
Cyclin D1, CNND1), as well as homozygous deletions in chromosome 9 (cyclin- 
dependent kinase inhibitor 2A, CDKN2A). Mutations in the telomerase reverse 
transcriptase (TERT) promoter are the most frequent, affecting 60% of HCC 
patients. The next most prevalent mutations are found in the tumor suppressor 
gene TP53 and catenin beta 1(CTNNB1) (25−30%), followed by genes with low-
frequency mutation rates (e.g., AXIN1; AT-rich interactive domain-containing 
protein, ARID2, ARID1A; tuberous sclerosis protein, TSC1/TSC2; ribosomal pro-
tein S6 kinase alpha 3, RPS6KA3; Kelch-like ECH-associated protein, KEAP1; 
MLL2). TP53-mutated human HCCs revealed increased Aurora A kinase (AURKA) 
 expression, hypersensitivity to treatment with conformation-changing AURKA 
inhibitors, and a positive correlation between AURKA and the proto-oncogene 
MYC expression (10). These findings help to define some of the core deregulated 
pathways in HCC (8, 11). The role of chronic tissue damage, inflammation, and 
metabolism, as well as signaling pathways controlling the immune response dur-
ing hepatocarcinogenesis, has been extensively studied (12–20).

Yet, there is still a need to gain a much deeper insight into the mechanisms 
responsible for liver cancer initiation; that is, the cellular origin; and progression; 
that is, propagation and maintenance; to facilitate the detection of more reliable 
tumor markers for diagnostic and prognostic applications, and the development 
of new targeted therapy approaches for liver cancer.

In this chapter, we will review relevant studies conducted to identify the cell of 
origin of HCC with a special focus on the controversy of hepatocytes versus 
hepatic progenitors as the main tumor-initiating cell (TIC). Furthermore, we will 
introduce the concept of cancer stem cells (CSCs) and highlight recent publica-
tions covering this topic in relation to liver cancer. More precisely, we will concen-
trate on the origin of CSCs, discuss accepted markers and the need to define a 
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Cellular Origin of Hepatocellular Carcinoma 3

consistent combination of them that can be utilized to clearly define this hetero-
geneous cell type, summarize important signaling pathways that govern the stem-
ness, and describe state-of-the-art assays to isolate and evaluate CSCs. We will 
focus on their contributions to oncogenesis and tumor heterogeneity, as well as on 
their feature to resist chemo- and radiotherapy. Finally, the potential of using CSC 
markers for diagnostic purposes and therapeutic approaches targeting these cells 
will be addressed.

CELL OF ORIGIN OF HCC

HCC is highly heterogeneous in cellular morphology, genetic landscape, and 
response to therapeutic interventions (21, 22). Two major molecular clusters 
(proliferation and non-proliferation) with distinguishing enrichment in prognos-
tic signatures, pathway activation, and tumor phenotype have been identified (8). 
Interestingly, one subtype of the more aggressive proliferation class was  specifically 
enriched in markers of progenitor cells (23, 24). These observations have led to 
several hypotheses about the cell(s) of origin of liver cancer with hepatocytes and 
hepatic progenitor cells (HPCs) as the main cellular elements whose malignant 
transformation could initiate hepatocarcinogenesis. Many studies carried out in 
the last years have attempted to shed light on the controversy of the origin of the 
TIC. In general, mouse primary HPCs, lineage-committed hepatoblasts, and 
 differentiated adult hepatocytes were shown to be targetable by oncogenic trans-
formation and to enable tumorigenesis via activation of diverse cell-specific path-
ways (25) (Figure1). However, the nature of target cells affected susceptibility to 
transformation, tumor histopathology, and global gene expression profiles. 
Tumors of HCC-like pattern predominantly derived from mature adult hepato-
cytes underlined that tumorigenic cells keep at least part of the differentiation 
program typically seen in the original cell, while HPC tumors adopt a more primi-
tive mesenchymal-like state (25). Of importance, distinct genetic changes are 
needed for the oncogenic transformation of different hepatic lineage cells. In addi-
tion, the type of genetic alteration predisposing towards carcinogenesis further 
contributes to the phenotypic and molecular diversity of HCC. In non- transformed 
HPCs as well as hepatocytes, loss of the tumor suppressor p53 resulted in chro-
mosomal imbalances and increased clonogenic capacity, and formation of tumors 
with bilinear differentiation after transplantation into immunocompromized 
mice (26). In the following sections, we will discuss the different evidences sup-
porting HPCs or hepatocytes as the cellular origin of HCC (Table 1).

Hepatic progenitor cells as tumor-initiating cells of HCC

Over the past years, several genetic and chemically induced HCC preclinical 
mouse models have been established (27–30). In fact, some of them suggest a 
progenitor cell origin of liver tumors (Figure 1, Table 1). HPCs isolated from 
mouse embryos were able to generate liver carcinomas resembling human HCC 
after isolation and ex vivo genetic manipulation followed by transplantation into 
the livers of recipient mice (31). Progenitor cells in mouse liver were shown to 
give rise to cancer due to interleukin-6 (IL-6)-driven transformation accompanied 
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by inactivated transforming growth factor beta (TGFβ) signaling (32). In contrast, 
constant TGFβ stimulation in cirrhotic liver was shown to promote the neoplastic 
transformation of HPCs to hepatic TICs that facilitate hepatocarcinogenesis 
through an miR216a/phosphatase and tensin homolog (PTEN)/Akt-dependent 
pathway (33). Both studies support a role of HPCs as the cell of origin of HCC 
but point to a contradictory role for TGFβ during their malignant transformation, 
potentially due to the interaction with other signaling pathways.

Mice with attenuated Hippo signaling activity within the liver expanded pro-
genitor cells and subsequently showed liver tumor formation (34). These findings 
are also relevant to human liver cancer, where the majority of human HCCs show 
elevated levels of nuclear yes-associated protein (YAP), which is indicative of attenu-
ated Hippo signaling in these tumors (35, 36). Similarly, deletion of the tumor 

Figure 1 LCSCs—origin and characterization. Hepatocytes, hepatic progenitor cells (HPC) and 
differentiated liver cancer cells are potential cellular origins of liver cancer stem cells (LCSC) 
via transformation or dedifferentiation. Different markers were shown to be specific for 
LCSCs. Signaling pathways associated with these markers are depicted.
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Cellular Origin of Hepatocellular Carcinoma 5

TABLE 1 The different hypotheses about the cell of origin 
of HCC

Proposed 
cell of origin Model Pathways Reference

HPCs Orthotopic transplantation into C57BL/6 mice cIAP1, YAP (31)

elf+/− mice IL-6, TGFβ (32)

Xenotransplantation into NOD-SCID mice TGFβ, Akt (33)

mst1/2 and sav1 conditional mutant mice Hippo (34)

Xenotransplantation into nu/nu mice Nf2/Merlin (37)

AFP-NICD mice Notch (38)

Ctnnb1 conditional mutant mice Wnt (40)

P240 PR-SET7ΔHepA mice STAT3 (43)

DEN/2-AAF/PH treatment of F-344 rats AP-1/JUN (44)

2-AAF/PH treatment of F-344/N Slc rats retinoid receptors (45)

EpcamCreERT2 transgenic mice
DDC
Xenotransplantation into NOD-SCID mice

Wnt (46)

Hepatocytes Tsc1/Sqstm1Δhep and Sqstm1Δhep/MUP mice p62/NRF2/mTORC1/
c-Myc

(48)

Stat3f/f mice, Il6−/−

AAV injection
db/db mice, Mdr2−/− mice

IL-6/STAT3 (49)

R26Tom Hnf1bCreER transgenic mice
DEN, Mdr2−/− mice

N/A (50)

OpniCreERT2 Rosa26RYFP transgenic mice
Rosa26loxP-mTom-stop-loxP–mGFP,  

Rosa26loxP-stop-loxP–ZsGreen1 Cre reporter mice
AAV injection
DEN, DEN/CCl4, DEN/CDE, DEN/DDC, 

Mdr2−/− mice

N/A (51)

AlfpCre p53fl/fl

hydrodynamic tail-vein injection
YAP, Wnt (52)

Foxl1Cre Rosa26RYFP transgenic mice
Rosa26loxP-stop-loxP-YFP Cre reporter mice
AAV injection
DEN/CCl4, DEN/TCPOBOP

YAP (53)

SOX9IRESCreERT2 Rosa26RYFP,  
serum albumin (SA)CreERT2 Rosa26RYFP

transgenic mice
hURI-tetOFFhepmice

galectin-3, 
α-ketoglutarate

(54)
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suppressor gene neurofibromatosis type 2 (Nf2) in livers of developing or adult 
mice resulted in liver cancer formation that was preceded by a progressive expan-
sion of progenitor cells while differentiated hepatocytes were not affected (37). 

Notch signaling, activated in one-third of human HCCs, was shown to pro-
mote liver carcinogenesis in a genetically engineered mouse model (38). All 
Notch-induced tumors showed various degrees of nuclear staining for the Notch 
target gene SOX9, a marker of HPCs (39); and SOX9 overexpression was fre-
quently observed in human HCCs. Therefore, during hepatocarcinogenesis, 
Notch may either control the expansion of a pre-existing progenitor-like cell 
population or drive progenitor-like properties to differentiated cells (Figure 1).

Furthermore, somatic β-catenin stabilization in a unique population of pro-
genitor cells in fetal liver resulted in the frequent development of HCCs with 
spontaneous lung metastases (40). Interestingly, this is in striking contrast to the 
absence of tumors when β-catenin is stabilized in adult hepatocytes indicating 
that activation of the Wnt pathway alone is insufficient for HCC initiation. Indeed, 
additional introduction of genetic alterations such as oncogenic Ha-rat sarcoma 
(Ras) or Akt mutation does result in cancer formation (41, 42).

Mice with proliferation-deficient hepatocytes spontaneously developed hepatic 
tumors composed of cells with CSC characteristics, including the capacity for 
self-renewal, differentiation, and tumorigenesis, due to prolonged necrotic 
regenerative cycles combined with oncogenic signal transducer and activator of 
transcription (STAT) 3 activation (43). The highly proliferating cancerous cells 
in this model can only be derived from HPCs that are still capable of prolifera-
tion and differentiation.

The investigations of hepatocarcinogenesis in different rat models additionally 
point towards HPCs as a potential cell of origin of HCC. Comprehensive charac-
terization of the neoplastic development, by exploring the expression of the bili-
ary and HPC marker cytokeratin (CK) 19 during the evolution of early preneoplastic 
lesions to fully developed HCC, suggested the potential progenitor derivation of 
the majority of the developed tumors (44). Additionally, global gene expression 
analysis revealed that CK19 may serve as a prognostic marker of early persistent 
hepatic preneoplastic lesions. Moreover, a CK19-associated gene signature dis-
covered through comparative functional genomics robustly stratified HCC 
patients according to clinical outcome, highlighting the strength of this rat model 
to reproduce stem cell/progenitor cell-derived human HCC (44). Subsequently, a 
subpopulation of precancerous cells in another rat liver carcinogenesis model was 
identified, which were enriched in CD133+CD44+ cells that formed part of the 
HPC fraction (45).

Finally, a recent lineage-tracing analysis showed that HPCs activated in chroni-
cally damaged liver and thought to originate from proliferating ductal cells were 
specifically labeled in epithelial cell adhesion molecule (EpCAM) CreERT2 mice 
and gave rise to HCCs through the accumulation of induced genetic alterations, 
supporting the existence of progenitor-derived hepatocarcinogenesis (46).

Hepatocytes as the cellular origin of HCC

More recent studies highlight adult hepatocytes as the other main source of HCCs 
(Figure 1, Table 1). These cells have the potential to directly transform into cancer 
cells following sequential genomic damage and dedifferentiate into precursor cells 
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expressing markers of progenitor cells (47). It was shown that hepatocyte-specific 
p62 expression promotes c-MYC induction, mechanistic target of rapamycin 
(mTORC) 1 activation, and HCC initiation (48). Another investigation demon-
strated that mice overexpressing FGF19 in hepatocytes develop HCC (49). 
Moreover, activation of STAT3 signaling through induced IL-6 production in the 
hepatic microenvironment was shown to be essential for FGF19-induced tumori-
genesis. Both studies demonstrate that genetic targeting of hepatocytes promotes 
development of liver cancer in mice.

In contrast to the lineage-tracing analysis employing EpCAMCreERT2 mice 
described above, studies using various other fate-tracing systems have shown that 
in hepatotoxin-induced as well as in carcinogen-free models, HCC does not origi-
nate from progenitor cells, thereby clearly demonstrating that tumors arose from 
hepatocytes in the liver. Tracking of progenitor cells via their expression of the 
biliary marker hepatocyte nuclear factor (HNF) 1β provided the first clear evi-
dence that tumors in classical genotoxic or genetic mouse HCC models do not 
originate from HPCs (50), at least in these experimental animal models. 
Consecutively, complementary fate-tracing approaches were employed to label 
the progenitor compartment and hepatocytes in murine hepatocarcinogenesis in 
order to not only rule out that HPCs represent the cell of origin of HCC but also 
prove that indeed hepatocytes bear the TICs. Tracking HPCs through osteopontin 
(Opn)-CreERT2 and genetically labeling of hepatocytes via infection with adeno-
associated viral serotype 8 (AAV8)-thyroxine binding globulin (Tbg)-Cre sug-
gested that hepatocytes constitute the main cellular source of HCC in mice and 
that a progenitor signature may not reflect progenitor origin, but dedifferentiation 
of hepatocyte-derived tumor cells (51). Indeed, loss of p53 facilitated YAP-
induced tumorigenesis. Mature hepatocytes dedifferentiated into nestin-positive 
progenitor-like cells, followed by differentiation into HCCs in response to muta-
tions targeting Wnt (52). Utilizing a complementary strategy to label the HPC 
compartment, Forkhead box L1 (Foxl1)+ cells, which express the progenitor 
markers EpCAM, SOX9, and CD133, were shown to not contribute to HCC 
tumorigenesis (53). Here, tumors arose exclusively from hepatocytes. Using 
human data as well as mouse models of HCC, HPCs were shown to be activated 
and expanded by transformed hepatocytes through galectin-3, maintaining HPC 
stemness, and α-ketoglutarate, preserving an HPC undifferentiated state (54). In 
the human unconventional prefoldin RPB5 interactor (hURI)-tetOFFhep mouse 
model, both hepatocytes and HPCs contributed to tumor heterogeneity. However, 
HCC predominantly originated from hepatocytes, whereas benign lesions devel-
oped from HPCs (54). Of note, HPCs are mainly activated and start to proliferate 
in damaged livers where hepatocyte proliferation is compromised (55). Most 
experimental conditions often do not actively suppress the ability of hepatocytes 
to proliferate and may therefore not always reflect the diverse human settings, 
which may well favor HPC proliferation due to local hepatocyte inhibition.

LIVER CANCER STEM CELLS

The observation that tumors exhibit significant cellular heterogeneity with respect 
to their tumorigenic potential led to the CSC concept (56). This concept proposes 
that the growth of tumors is fuelled by limited numbers of dedicated stem cells 
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that are capable of unlimited self-renewal and production of heterogeneous prog-
eny (57). CSCs are considered to be highly tumorigenic, metastatic, chemother-
apy- and radiation-resistant, and responsible for tumor relapse (58). Indeed, the 
participation of liver cancer stem cells (LCSCs) in hepatocarcinogenesis was 
reported. Initial studies were based on the identification of a side population (SP) 
in HCC cell lines and tumors after staining with the DNA-binding dye Hoechst 
33342 that was enriched in cells displaying CSC properties (59, 60). Interestingly, 
when DEN-induced collagenase-resistant aggregates were isolated and character-
ized, cells were detected that can give rise to HCC only after transplantation into 
an appropriate host liver undergoing chronic injury (61). These HCC progenitor 
cells (HcPCs) acquired autocrine IL-6 signaling that stimulated their in vivo 
growth and malignant progression. Ectopic lymphoid structures (ELS), associated 
with chronic nuclear factor “kappa-light-chain-enhancer” of activated B-cells 
(NF-κB) activation, were shown to function as cytokine-rich microniches for these 
tumor progenitor cells (62). 

Subsequent investigations focused on the attempt to identify and use reliable 
membrane marker(s) for LCSCs. In the following sections, we will discuss 
accepted markers and the need to define a consistent combination of them that 
can be utilized to clearly define this heterogeneous cell type, summarize impor-
tant signaling pathways that govern their stemness, and describe state-of-the-art 
assays to isolate and evaluate CSCs.

Markers to identify LCSCs

CD133, also referred to as prominin-1, is a well-established cell surface marker of 
hematopoietic stem cells, neuronal stem cells, and HPCs (63). In HCC, its pres-
ence seems to be of clinical significance, since patients with high CD133 expres-
sion exhibit poor overall survival and higher recurrence rates compared with 
patients with low CD133 expression (64). A meta-analysis of all the data available 
in the literature about the correlation between CD133 expression and various 
clinicopathological parameters revealed that the abundance of CD133 expression 
correlated with enhanced alpha-fetoprotein levels, a poor histological grade and 
survival, but did not show significant relation with hepatitis, cirrhosis, and stage 
of the tumor (65).

Moreover, CD133 was identified as a LCSC marker. Initial studies were based 
on the identification and characterization of CD133+ cells in hepatocarcinoma cell 
lines. In CD133+ cells, when compared to their CD133− counterpart, a greater 
colony-forming capacity in vitro and higher proliferative activity as well as 
enhanced ability to form tumors in vivo, both in orthotopic and subcutaneous 
cancer models, was seen (66–68). CD133+ cells preferentially expressed genes 
associated with stemness, such as Bmi1, SOX2, Oct4, Notch, Nanog, Nestin, and 
membrane transporters ATP-binding cassette (ABC) G2 and ABCB1 (68). 
Subsequent studies focused on the characterization of CD133+ cells in primary 
human hepatocarcinomas. CD133 expression in HCC was associated with an 
advanced tumor stage, a larger tumor size, and a poor prognosis (69). A rare 
CD133 population in HCC specimens, with expression ranging from 1.3 to 13.6% 
of the total tumor cell population, was identified (69). When isolated, these cells 
were able to form tumor spheroids composed of undifferentiated tumor cells and 
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had a larger capacity to grow tumors of identical morphology compared to the 
parental ones in immunodeficient mice (69). Interestingly, overexpression of miR-
130b, an miR targeting p53-induced nuclear protein 1 (TP53/NP1), was detected 
in CD133+ cells. To further characterize these cells on a molecular level, CD133+ 
and CD133− cells were isolated from both tumor cell lines and primary tumor 
samples and characterized by genome-wide expression analysis. Self-renewal, 
tumorigenesis, and angiogenesis were shown to be promoted by CD133+ liver 
TICs through neurotensin-induced activation of the IL-8 and chemokine (C-X-C 
motif) ligand 1 (CXCL1) signaling cascade (70).

CD44, a major adhesion molecule of the extracellular matrix and the receptor 
for hyaluronic acid, is implicated in a wide range of biological processes. CD44 
potentiates AKT activation, thereby ceasing the p53 genomic surveillance 
response. DNA-damaged hepatocytes thus escape p53-induced death and 
 senescence and respond to proliferative signals, promoting the accumulation of 
mutations and subsequently transformation to HCC progenitors (71). In HCC, 
the expression of CD44s (CD44 standard variant) was related to TGFβ-mediated 
regulation of the mesenchymal phenotype, and a negative patient prognosis was 
associated with overexpressed levels of CD44s (72). CD44s was recently shown to 
play an important role in maintaining CSCs and regulating oxidative stress of 
an HCC cell line in a Notch3-dependent manner. In addition, CD44 expression 
in  HCC tissues was significantly correlated with Notch3 expression, further 
strengthening the idea that CD44 regulates CSC properties via Notch3 (73). In an 
effort to investigate interactions between the tumor microenvironment and CSCs, 
IL-6 produced by tumor-associated macrophages (TAMs) was shown to promote 
expansion and tumorigenesis of CD44+ cells. Concomitantly, levels of IL-6 in 
human HCC samples positively correlated with tumor stage and markers of 
CSCs (74).

In a separate study, CD44 was preferentially expressed in the CD133+ popula-
tion, and double-positive cells possessed the abilities of extensive proliferation, 
self-renewal, and differentiation. Furthermore, double-positive cells expressed 
more stem cell-associated markers, such as Bmi1, rendering them highly tumori-
genic and chemoresistant (75). Moreover, CD133+CD44high cells played a key role 
in hematogenous metastasis of liver cancers, with CD133 being responsible for 
tumor growth and CD44 being important for invasion (76). In human patients, 
CD44+ and CD133+ correlated with increased risk of poorly differentiated HCC 
and elevated alpha-fetoprotein levels. CD44 and CD133, alone or in combination 
with microvascular invasion, are independent predictors of poor prognosis in 
patients undergoing transplantation for HCC (77).

Expression levels of CD24, a mucin-like cell surface glycoprotein, are related 
to liver cancer progression and prognosis (78). Additionally, it was recently identi-
fied as a potential marker of LCSCs. CD24+ HCC cells were found to be critical for 
the maintenance, self-renewal, differentiation, and metastasis of tumors through 
STAT3-mediated Nanog upregulation, and to significantly impact patients’ clini-
cal outcome. CD24 expression overlaps with that of CD133 and EpCAM (79). 
CD24 expression on hepatocarcinoma cells was shown to be induced by Twist2 
and to be required for the stimulation of HCC stem cell self-renewal (80). Most 
recently, an investigation of the regulation of CSCs by the tumor microenviron-
ment demonstrated that HGF and IL-6 secreted by cancer-associated fibroblasts 
promoted self-renewal, chemotherapy resistance, metastasis, and tumorigenicity 
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of CD24+ cells. More precisely, regulation of stemness properties was dependent 
on STAT3 signaling (81). The abundance of the stem cell markers CD24 and 
CD133 in tumors of HCC patients correlated with increased inducible nitric oxide 
synthase (iNOS) expression, promoting Notch1 signaling and subsequent devel-
opment of stemness traits, as well as accelerated HCC initiation in the mouse 
xenograft tumor model (82).

EpCAM, a homophilic, Ca2+-independent cell–cell adhesion molecule, is 
expressed on a subset of normal epithelia and overexpressed on malignant cells 
derived from a variety of tumors. This overexpression is even more pronounced 
on TICs (83). HCCs can be subdivided into two different subgroups, with EpCAM+ 

tumors displaying features typically observed at the level of HPCs and EpCAM- 
hepatocarcinomas exhibiting features more typical of mature hepatocytes (24). 
EpCAM expression was induced by Wnt-β-catenin (84). Moreover, zinc finger 
protein X-linked was shown to activate and maintain EpCAM+ liver CSCs by pro-
moting nuclear translocation and transactivation of β-catenin (85). EpCAM+ cells 
isolated from EpCAM+AFP+ HCCs displayed properties of CSCs and were able 
to initiate tumorigenesis when inoculated into immunodeficient mice (86, 87). 
The highest tumor-initiating activity in hepatocarcinoma cell lines was found 
in CD133+EpCAM+ cells, compared to CD133+EpCAM− and CD133−EpCAM+ 
populations (88).

CD90, a glycosylphosphatidylinositol-anchored glycoprotein, also known as 
Thy-1, was revealed to be a reliable marker for CSCs. The number of CD90+ cells 
isolated from different HCC cell lines positively correlated with tumorigenicity and 
metastatic potential. CD45−CD90+ cells, in contrast to CD90− or CD45−CD90− cells, 
isolated from tumor tissues and blood samples of liver cancer patients had the 
capacity to generate tumor nodules in immunodeficient mice (89, 90). Interestingly, 
CD44 was shown to regulate the survival and the tumorigenic activity of CD90+ 
liver cancer cells. CD90+CD44+ cells showed a more aggressive phenotype than the 
CD90+CD44− counterpart (90). In primary HCC, EpCAM and CD90 expressions 
were mutually exclusive. Gene-expression analysis of sorted cells suggested that 
EpCAM+ cells exhibited features of epithelial cells, whereas CD90+ cells resembled 
mesenchymal cells (91). A poorly differentiated morphology and high serum alpha-
fetoprotein was associated with the presence of EpCAM+ cells, whereas a high inci-
dence of distant organ metastasis correlated with CD90 positivity (91). Most 
interestingly, a potential interaction of EpCAM+ and CD90+ CSCs was demonstrated. 
The motility of EpCAM+ cells was enhanced by CD90+ cells when cocultured in 
vitro through the activation of TGFβ signaling (91). CyclinD1 overexpression and 
subsequent Smad signaling increased the development of the CD90+EpCAM+ cell 
population, concomitantly increasing stemness and chemoresistance (92). Studying 
gene expression differences between CD90+ CSCs from tumor tissue and CD90+ 
cells from non-tumorous counterparts confirmed the upregulation of genes in 
CD90+ CSCs associated with the biological processes of liver inflammation, chemo-
resistance, and lipid metabolism (93).

Enrichment of CD13, a membranous glycoprotein, was correlated with early 
recurrences and poor prognosis in patients with HCC (94). It was identified as a 
marker for semi-quiescent CSCs in human liver cancer cell lines and clinical 
samples (95, 96). The association of CD13+ CSCs with a hypoxic marker in clini-
cal HCC samples points to a critical role of these cells in carcinogenesis and 
resistance to therapy in liver cancers (97). In liver cancer cells, increased CD13 
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expression was associated with TGFβ-induced epithelial to mesenchymal transi-
tion (EMT), concurrently preventing further increases of both reactive oxygen 
species levels and the induction of apoptosis, thereby promoting the survival of 
CD13+ cells (98).

OV6, a monoclonal antibody isolated from carcinogen-treated rat liver, was 
shown to serve as a hepatic progenitor marker (99). Interestingly, the expression 
of this molecule defined a subpopulation of less differentiated progenitor-like cells 
in both HCC cell lines and primary HCC tissues (100). These cells exhibited 
endogenously active Wnt/β-catenin signaling, enhanced tumorigenicity in vivo, 
and a substantial resistance to standard chemotherapy (100). CSC-like HPC lines 
overexpressing OV6 as well as CD133, EpCAM, and the pluripotency factor Oct4 
can be established from human non-tumorous, tumor-surrounding tissue (101). 
Moreover, OV6-positive TICs were more invasive and metastatic both in vitro and 
in vivo and expressed high levels of C-X-C chemokine receptor type 4 (CXCR4), 
indicating a role for SDF-1/CXCR4 signaling in sustaining stem cell properties 
(102). Patients with elevated numbers of OV6+ tumor cells were associated with 
aggressive clinicopathologic features and poor prognosis (102).

Marker combinations to clearly define LCSCs

As discussed above, several LCSC markers have been reported and used to isolate 
and characterize LCSCs (Figure 1). However, the reliability of each of these mark-
ers in identifying true LCSCs is still controversial (103) calling for a comprehen-
sive evaluation of the effectiveness of stem cell markers. In an effort to evaluate the 
efficiency of some markers to characterize and isolate LCSCs, a range of the most 
commonly used ones (CD44, CD90, and CD133) were tested in both human 
HCC samples and HCC cell lines. Surprisingly, CSC markers were present in both 
tumors and adjacent non-cancerous liver. However, the number as well as the 
staining intensity of positive cells varied with no consistent expression 
patterns (104). Furthermore, LCSCs isolated from the same cell line via different 
markers or from different cell lines via the same markers exhibited a unique 
genetic program of gene expression reflecting the strong heterogeneity of the ori-
gin of liver cancer and possibly the varied etiology of HCC (104). On the contrary, 
a more recent study demonstrated that increased expression of a combination of 
markers (CD90, CD24, CD13, and CD133) in HCC not only correlated with 
advanced disease stage but also with larger tumor size and worse overall 
survival (105). The markers CD90, CD44, CD133, CD13, and CD24 were  present 
diversely in all HCC samples. In contrast to the previous study, their expression in 
non-tumor liver tissues was almost absent (105). CD90+CD24+CD13+CD133+ 
HCC cells possessed progressively increasing self-renewal and tumor-initiating 
ability in vitro and in vivo (105).

Combining more than one marker has been shown to increase the isolation 
efficiency (75, 103). LCSCs most probably represent a large group of diverse sub-
types, each expressing their own different combination of markers. To develop 
future therapies targeting CSCs, and to predict prognosis and efficacy of these 
therapies, it is therefore crucial to comprehensively study and define these distinct 
groups of CSCs in relation to their expression profiles and clinicopathologic fea-
tures of HCC.
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Signaling pathways governing stemness of LCSCs

Several signaling cascades in LCSCs are important to regulate their capacity of 
unlimited self-renewal and production of heterogeneous progeny, their tumori-
genic and metastatic potentials, as well as their resistance to chemotherapy and 
radiation (Figure 1). The essential pathways are Wnt/β-catenin, Notch, and TGFβ, 
among others (106).

Wnt/β-catenin activation is one of the pathways being aberrantly active in HCC 
(107). Proliferation, rapid generation of tumor spheres, and high invasiveness of 
SP cells isolated from liver cancer samples depended on Wnt/β-catenin signaling 
(108). In this group of liver cancer cells, elevated expression of β-catenin leads to 
an increased expression of Wnt/β-catenin target genes, including AXIN2, DKK1, 
and CCND1 (108). Importantly, activation of Wnt/β-catenin signaling has been 
reported in CD133+(68), EpCAM+(86), and OV6+(100) CSCs. The Wnt pathway 
is activated following nuclear translocation of the β-catenin component, thereby 
inducing the transcription of prominent targets, such as CD44 (109), EpCAM 
(84), and c-Myc (110).

Notch signaling misregulation in liver cancer has been described as both onco-
genic and tumor-suppressive, depending on the cellular context (111). This path-
way was activated in CD90+ cells isolated from HCC cell lines and was associated 
with self-renewal, invasion, migration and expression of stem cell-related genes 
(112). Notch signaling stimulated G1-S transition in the cell cycle phase and 
inhibited apoptosis, thus facilitating CSC features (112). CD90+CD24+CD13+ 

CD133+ HCC cells utilize upregulation of Notch and Wnt/β-catenin to initiate 
tumor growth and self-renewal (105).

Activation of the sonic hedgehog (Shh) pathway occurs in the CD133+ sub-
population of Hepa 1–6 cells that harbor stem cell features (113). In general, 
Hh–Notch interactions were shown to regulate cell-fate decisions in an HPC-like 
cholangiocyte cell line (114).

TGFβ serves as a central regulator of signal transduction during inflammation 
and HCC (115). Recently, TGFβ signaling has also been linked to the malignant 
transformation of LCSCs. The percentage of SP cells, as well as their survival rate 
and chemotherapeutic resistance, was shown to increase following TGFβ treat-
ment of a hepatoma cell line. Gene analysis revealed that epidermal growth factor 
receptor (EGFR) was upregulated and that this was dependent on Smad (116). 
On the contrary, TGFβ treatment resulted in decreased cell survival and con-
comitantly a reduced number of SP cells in HCC cell lines through induction of 
 accumulation of cells at G0/G1 and upregulation of p-c-Jun N-terminal kinases 
(JNK), p-c-Jun, and p-Smad2 expression(117). These recent results indicated 
that TGFβ has anticancer effects mediated by inhibition of CSC survival. 
Differences in the analyzed cell lines and assays most probably account for the 
diverse outcomes. Nevertheless, both studies emphasize the diverse and contro-
versial functions of TGFβ signaling in LCSCs. CD133 expression was upregu-
lated by TGFβ1 stimulation through epigenetic regulation of promoter 
methylation. Furthermore, increased tumorigenicity of TGFβ1-induced CD133+ 
cells compared to CD133− cells was shown (118). A change in the expression 
pattern of stem cell genes, enhancement of their stemness potential, and migra-
tory and invasive capacity was observed in HCC cells, mediated by TGFβ-
induced EMT (119). Similarly, HIF1α-induced EMT, by activation of the Notch1 

CP-007.indb   12 10/23/19   3:54 PM



Cellular Origin of Hepatocellular Carcinoma 13

pathway through direct interaction with Notch intracellular domain, promoted 
the CSC characteristics of HCC cells (120). When investigating the tumor micro-
environment, TAMs were found to secrete TGFβ1 that promoted CSC-like prop-
erties through EMT induction (121).

Both HCC cell lines and HCC patient samples were shown to exhibit expres-
sion of at least one key driver of embryonic development such as Oct4, Nanog, 
SOX2, and STAT3 accompanied by the expression of genes of the Wnt/β-catenin 
and TGFβ families (122). Highly enriched CSC populations isolated from differ-
ent liver cancer cell lines maintained a common gene expression signature char-
acteristic of cellular stemness and harbor an activation of NF-κB as well as IL-6 
and Wnt/β-catenin signaling pathways. Each individual cell line typically exhib-
ited an activation of unique oncogenic pathways such as EGFR, MYC, and SRC, 
which are known to be associated with HCC (123).

Isolation of LCSCs

Currently, identification and isolation of LCSCs is achieved through several 
approaches, including (i) detection of SP by the Hoechst 33342 exclusion assay 
(59), (ii) separation using surface markers (124), and (iii) in vitro tumor sphere 
formation (125, 126). SP cells can be detected and isolated by flow cytometry 
through their ability to efflux Hoechst 33342 dye through an adenosine triphos-
phate (ATP)-binding cassette (ABC) membrane transporter. Overexpression of 
ABC proteins was associated with CSCs, conferring drug resistance to them 
(127). SP cells purified from HCC cells were shown to harbor CSC-like proper-
ties (59). However, some restrictions are associated with this isolation approach, 
since the SP compartment contains both stem and non-stem cells, and, on the 
other hand, other stem cells of ill-defined identity are not found in the SP frac-
tion (128). Interestingly, epigenetic modulation increased the frequency of cells 
with CSC properties in the SP fraction isolated from human cancer cells, facilitat-
ing functional isolation of cells, which possess self-renewal and tumor-initiating 
capacity (123). 

LCSCs are commonly isolated from cell cultures or whole liver by fluorescent 
(or magnetic) activated cell sorting using surface markers reported to be specific 
for CSCs of HCC. As already discussed above, the heterogeneity and complex 
nature of CSC biology hamper the reliable use of single—or even combinations 
of—markers to draw reproducible conclusions.

Sphere cultures have been used as a method for the enrichment of stem cells 
relying on their property of anchorage-independent growth. The tumor sphere-
forming cells derived from human hepatoma cell lines were capable of prolifera-
tion and self-renewal, and possess higher tumorigenicity and a general resistance 
to chemotherapeutics (126). Using this approach may favor the selection of a 
specific subpopulation of CSCs during cultivation.

The different ways to isolate LCSCs all have their limitations, and there-
fore, caution has to be taken when comparing results obtained with dissimilar 
approaches. In the future, improved knowledge of the diversity of LCSCs will 
allow to define and selectively isolate these cells. CSC-specific properties, that 
is, unlimited self-renewal, ability to develop a malignant tumor, and resistance 
to chemotherapeutic agents, can be evaluated by some assays in vitro and 
in vivo.
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Characterization of LCSCs

The clonogenic or colony formation assay represents an in vitro cell assay based 
on cell survival and the ability of an individual cell to grow into a colony, thereby 
testing for the ability to divide an unlimited number of times (129). This assay can 
provide information about cell survival and resistance after treatment with differ-
ent agents. However, this assay does have limitations such as the loss of the three-
dimensional environment of a cell within a given tissue. Therefore, the effect of 
cell–cell or matrix–cell communication on cell proliferation cannot be measured. 
Moreover, this assay cannot be used in case the substance concentration decreases 
cell growth but does not affect cell cycle progression and/or DNA synthesis (130).

The ability to form spheres is used to enrich CSCs and can additionally also be 
applied as an in vitro method for assessing the self-renewal and multipotency 
capacity of a given cell population. Three-dimensional spheroids can be formed 
by CSCs containing a heterogeneous population of progenitor cells, which can 
differentiate into multiple cell types under these low-adherence and non- 
differentiating conditions. The ability of cells to form tumor spheres upon multi-
ple passages demonstrates the self-renewal capacity of CSCs, and this potential 
correlates with the number of spheres formed (106). Hypoxia and the low pH in 
the sphere’s core and the characteristics of the inner cells that may be inaccessible 
to metabolites and drugs in comparison to exterior cells are believed to mimic the 
characteristics of solid tumors in vivo. Moreover, this assay has been used to eval-
uate the migration and invasive ability of CSCs. Even though self-renewal of CSCs 
can be usefully assessed by this assay, several limitations have to be acknowledged 
(131). The size of generated spheres and the number of cells that are necessary to 
form spheres strongly depend on the cell type and methodology used. This makes 
the comparison of results from different cell types challenging (132). 

In an in vivo tumorigenicity assay, the tumor cell population of interest is 
transplanted into animal models, followed by an evaluation of their tumor- 
propagating capacity (133). Nevertheless, this assay has some limitations. This 
relates to the use of immunodeficient animals and the fact that the context of 
tumor development is clearly different from recipient animals harboring a normal 
immune system. Additionally, it is important to consider that upon xenotrans-
plantation, the architecture and stroma of the tumor differ compared with its 
native niche. Finally, if the cells used for transplantation are isolated based on a 
selection of markers, the effects of the total population can be lost. Some of these 
constraints can be circumvented by using syngeneic models, by injecting the cells 
orthotopically, or by analyzing different subpopulations simultaneously with the 
total population, although this is not always possible. The transplantation assay is 
the current “gold standard” for identifying CSCs because it can assess both self-
renewal and multipotency. On the other hand, lineage tracing is the current gold 
standard for defining the cell of origin of transformation in mouse models. 
However, it is also being applied to elucidate the proliferative potential and fate of 
stem cells (125). Different cell-specific promoters allow distinct cell subpopula-
tions to be labeled, facilitating tracking of a single cell-derived clone in animals. 
Lineage tracing utilizes (in some cases inducible) Cre transgenic mouse lines, 
 harboring cell type-specific gene promoters to drive Cre expression, and common 
reporter lines, either fluorogenically or colorigenically flanked by a loxP-STOP-
loxP sequence. Cre expression via excising loxP-STOP-loxP cassettes activates the 
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reporter in cells that possess the respective promoter activity. As with other assays, 
there are limitations associated with lineage tracing as well. Labeling efficiencies 
are highly variable depending on the Cre- or reporter-driving promoters. Systems 
frequently become “leaky,” having minor but detectable Cre activity in the absence 
of the inducer, resulting in spontaneous background recombination. One of the 
main limitations is the fact that CSCs or HPCs are a particular heterogeneous 
population that may switch phenotype and marker expression (134) in a context-
dependent manner. Therefore, lineage tracing of these cells focuses on a certain 
subpopulation only. Nevertheless, when carefully considering all potential pitfalls, 
this assay presents a valuable tool to obtain a better understanding of the cellular 
origins of cancer and CSCs (125). Although in vitro assays are convenient and 
faster, until now, the best assay to reliably and robustly assess tumorigenicity has 
been in vivo evaluation.

THERAPEUTIC RESISTANCE OF LCSCS

The effectiveness of standard therapies against HCC, such as chemotherapy, the 
multikinase inhibitor sorafenib, and radiotherapy, is impaired by LCSC-mediated 
resistance (135) (Table 2). Cellular quiescence, DNA repair capacity, and ABC-
transporter expression are characteristics of CSCs mediating chemo- or radio-
therapy resistance and regrowth of the tumor after treatment (128). The increased 
expression of stem cell surface proteins in liver cancer SP cells induced the rapid 
formation of tumor spheres and enhanced transcription of drug efflux genes 
(ABCG2, MDR1, and ABCB5). These cells were resistant to numerous DNA target-
ing drugs (108). CD133+ HCC cells contributed to chemoresistance through pref-
erential activation of Akt/PKB and Bcl-2 cell survival response, thereby supporting 
the opinion that CSCs are the source of tumor recurrence after chemotherapy 
(136). Additionally, these cells were more resistant to radiation-induced apoptosis 
than CD133− cells and exhibited greater proliferation and tumor-initiating capac-
ity in vivo post-radiation (137). Downmodulation of this membrane antigen in 
isolated cells induced both a decrease in their stemness properties and an enhance-
ment in their chemo- and radiosensitivity, at least to some extent, indicating that 
resistance of CD133+ liver CSCs is related to CD133 expression (138). An enrich-
ment of CD90+ and CD133+ cells was observed in tumor spheres obtained from 
the culture of HCC cell lines under serum-free conditions favoring stem cell 
growth. These spheres showed a high overexpression of ABCG2 and Oct4 and 
resistance to chemotherapy drugs (127). Expression of CD13 was shown to 
reduce the extent of DNA damage induced by the production of reactive oxygen 
species following genotoxic stress, thereby protecting cells from apoptosis, and 
thus rendering cells radio- and chemoresistant (95, 96).

In a study that focused on exploring whether CSC markers have a predictive 
role with regard to the sorafenib response in HCC patients, overexpression of 
CD133 and CD90 in HCC was associated with a worse response to the multiki-
nase inhibitor and therefore a shorter progression-free survival time (139). 
Sorafenib-resistant HCC tumor cells show a high expression of CD24. The 
requirement for resistance to sorafenib of this functional marker relied on AKT/
mTOR-mediated autophagy regulation (78). 
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Enriched proportions of CD44+ and CD44+CD133+ HCC cells in sorafenib-
resistant cells, as well as upregulation of stemness genes Nanog, SOX2, and Oct4 
in EpCAM-positive HCC cells and enhancement of tumorigenicity after treatment 
with sorafenib (140, 141), further suggest that sorafenib can foster cancer stem-
ness in liver cancer. A subpopulation of CSCs derived from HCC cell lines, referred 
to as label-retaining cancer cells that are distinguished by pluripotency gene 
expression profile, were shown to possess a relative resistance to sorafenib. 
Treatment of these CSCs led to reduced apoptosis and improved viability and was 
accompanied by gene expression profiles, which mark stem cell differentiation 
(142). All results emphasize the role of sorafenib treatment in CSC maintenance 
and CSC-mediated resistance against sorafenib.

TABLE 2  Therapeutic resistance in LCSCs

LCSC marker Resistance Mechanisms Reference

Side population cells 5-FU, gemcitabine, oxaliplatin, paclitaxel, 
cisplatin, etoposide, oxaliplatin

ABCG2, MDR1, 
ABCB5

(108)

5-FU TGFβ/Smad/EGFR (116)

Sorafenib AKT, ERK (142)

CD133 Doxorubicin, fluorouracil Akt/PKB (136)

Radiation MAPK/PI3K (137)

Cisplatin, doxorubicin, radiation Bcl-2/Bax (138)

Sorafenib ABCG2 (168)

CD133, EpCAM Doxorubicin N/A (88)

CD133, CD90 Doxorubicin Oct4, ABCG2 (127)

Sorafenib N/A (139)

CD133, CD44 Sorafenib ABCC1–3 (140)

CD24 Sorafenib AKT/mTOR (78)

Cisplatin STAT3/Nanog (79)

Sorafenib STAT3 (81)

CD90 Doxorubicin PI3K/Akt1 (169)

CD90, EpCAM Cisplatin, doxorubicin cyclin D1/Smad (92)

EpCAM Sorafenib TSC2/AKT (141)

CD13 5-FU, doxorubicin, radiation N/A (95–97)

OV6 Cisplatin Wnt/β-catenin (100)

Sphere-forming cells Cisplatin, 5-FU, gemcitabine, mitomycin, 
sorafenib

N/A (126)

Chemo-resistant 
cells

5-FU, cisplatin, doxorubicin Oct4/AKT/ABCG2 (170)
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CLINICAL IMPLICATIONS OF LCSCS

The important role of LCSCs in the initiation, maintenance, relapse, metastasis, 
and drug resistance of HCC has been identified. Therefore, development of novel 
liver cancer diagnosis and treatment strategies will be impacted by the identifica-
tion of signaling pathways as well as stem cell markers activated in LCSCs (58). 
Targeting LCSCs is expected to be a promising approach for the treatment of liver 
cancer (143). 

HCC patients with stemness-associated gene expression traits generally have a 
poor prognosis (23, 24, 123, 144, 145). However, predictive values of single 
LCSC markers still remain controversial (146). Rather, a combination of several 
markers may provide greater specificity and reliability in predicting HCC progno-
sis (24, 147). CSCs can be isolated from peripheral blood mononuclear cells as 
circulating tumor cells due to their highly invasive and metastatic capacity and 
thus may provide diagnostic or prognostic information (89, 148).

In recent years, targeting LCSCs has become a novel strategy to improve the 
outcome of HCC treatment. Targeted therapies based on tumor cell-specific cell 
surface markers have been proposed to specifically eradicate LCSCs (149). 
Anti-CD133 antibody-drug conjugates inhibited CD133+ HCC growth in vitro 
and in vivo (150). Similarly, CD44 blockade prevented the formation of local and 
metastatic tumor nodules by the CD90+ cells (90), and EpCAM blockage via RNA 
interference significantly inhibited cellular invasion, spheroid formation, and 
tumorigenicity of an HCC cell line (86). Additionally, it was shown that the com-
bination of a CD13 inhibitor and the genotoxic chemotherapeutic fluorouracil 
(5-FU) reduced tumor volume compared with either agent alone. 5-FU inhibited 
CD90+ proliferating CSCs, some of which produced CD13+ semiquiescent CSCs, 
while CD13 inhibition suppressed the self-renewing and tumor-initiating ability 
of dormant CSCs (95), suggesting that combining a marker-targeted treatment 
with a chemo- or radiation therapy may improve the treatment of liver cancer.

Some promising targets against LCSCs for the treatment of HCC can be found 
among the several signaling pathways that are essential for the development and 
maintenance of LCSCs (143). Constitutive expression of Wnt/β-catenin was 
detected in LCSCs, and downregulation of it suppressed the cell phenotype (108). 
Employing different inhibitors of this pathway clearly impaired the viability of 
LCSCs as well as decreased the tumorigenicity in vitro and in vivo (151–153). 
Moreover, some phytochemicals have also been demonstrated to restrain the 
self-renewal and proliferationof LCSCs by suppressing Wnt/β-catenin signaling 
(154, 155). Lupeol, another phytochemical, inhibited chemoresistance, self-
renewal ability, and tumorigenicity of CD133+ CSCs, concomitantly sensitizing 
these cells to chemotherapeutic drugs via the PTEN-Akt-ABCG2 signaling path-
way (156). Usage of a small molecule inhibitor targeting TGF-β/Smad signaling 
followed by conventional therapy induced CSC differentiation, resulting in sig-
nificant chemosensitization in vitro and in vivo (92).

Another interesting therapeutic approach is the induction of CSC differentia-
tion into non-CSCs to lose their self-renewal property (149). Oncostatin 
M (OSM), an IL-6-related cytokine, is known to enhance differentiation of hepa-
toblasts into hepatocytes by inducing the activation of the STAT3 pathway (157). 
OSM effectively induced the differentiation of EpCAM+ LCSCs. Moreover, 
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combining oncostatin M treatment and 5-FU-based chemotherapy efficiently tar-
geted both CSCs and non-CSCs and ultimately eliminated HCC (158). HNF4α is 
a key transcription factor for hepatocyte differentiation. Differentiation of hepa-
toma cells, especially CSCs, into hepatocytes could be induced by forced 
 re-expression of this protein, which was associated with a decrease in stemness 
gene expression and the relative abundance of CD133+ and CD90+ cells (159). 
Arsenic trioxide also induced cell differentiation, consequently sensitizing LCSCs 
to conventional chemotherapy in HCC (160). All-trans retinoic acid effectively 
induced differentiation of TICs, which potentiated the cytotoxic effects of cispla-
tin (161). High-dose exogenous BMP4 promoted CD133+ LCSC differentiation 
and inhibited the self-renewal, chemotherapeutic resistance, and tumorigenic 
capacity of these cells (162). In addition, inducing differentiation of already pre-
malignant hepatic cells via blocking of mCXCL1 was proposed as a novel thera-
peutic strategy in HCC (163).

One of the recent approaches to target CSCs directly involves immunothera-
pies. Chimeric antigen receptor T cell (CAR-T) targeted against glypican-3 (an 
attractive liver cancer-specific target as it is highly expressed in HCC but displays 
limited expression in normal tissues) was shown to suppress HCC growth (164). 
CSC antigen-targeted CAR-T cells are therefore promising tools for the direct 
eradication of these cells.

Although numerous strategies for targeting LCSCs have been investigated, 
treatments for the eradication of CSCs still require further development until they 
are suitable to enter the clinics. Potential adverse effects on normal stem cells 
should be carefully evaluated because CSCs share similar features with normal 
stem cells. Therefore, the future challenge is to identify specific CSC markers and 
develop a specific treatment for LCSCs.

CONCLUSION

To improve diagnosis, prognosis, and treatment of HCC, it is of uttermost impor-
tance to get a much broader and deeper knowledge about the cancer-initiating cell 
as well as the cancer-propagating cell. For human cancer, the target cell popula-
tion of malignant transformation is controversially discussed, but increasing 
 evidence suggests that different cells of origin (Figure 1) as well as diverse genetic 
mutations account for cancer heterogeneity (58). More recent state-of-the art 
 lineage tracing studies employing different models of experimental hepatocar-
cinogenesis highlight the role of hepatocytes as the cellular origin of HCC 
(Table 1). Not only these studies proved that tumors originated almost exclusively 
from hepatocytes but also ruled out a direct involvement of HPCs in initiating 
carcinogenesis. Nevertheless, most of the investigations were performed in animal 
models which have some limitations. Considering the fact that during chronic 
liver injury a variety of cells can respond to the need for cell replacement and liver 
regeneration (165–167), it is highly likely that the cell of origin of HCC is equally 
context-specific. Therefore, it is crucial to further strengthen the examination of 
human HCC, to identify the cells that give rise to liver tumors and elucidate the 
different classes of tumors based on their molecular features.
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Liver cancers with stemness traits are generally associated with a poor progno-
sis for patients, indicating that CSC markers have both diagnostic and prognostic 
potential. LCSCs are typically resistant to chemo- or radiotherapy as well as 
sorafenib treatment (Table 2) and have been shown to play critical roles in tumor 
progression, maintenance, and recurrence. Targeting surface markers or signaling 
pathways (Figure 1) in, or inducing differentiation of, these cells has already been 
demonstrated to interfere with tumorigenicity in preclinical studies. Although 
these data are promising, there are still some obstacles to overcome before similar 
strategies can enter the clinics. Specificity is one major concern since CSCs share 
identical features with normal stem cells that can be only resolved by unequivo-
cally characterizing LCSCs. So far, the lack of a uniform definition of the CSC 
(sub) populations complicates the reliable comparison of results obtained using 
different approaches to isolate and characterize these cells. Furthermore, LCSCs 
are likely to be distinct and different for each individual tumor, according to 
genetic traits and activated signaling pathways. To define therapeutic targets spe-
cifically aimed at LCSCs, it is essential to face this challenge and consistently work 
on the elucidation of traits that confer CSC properties. 

To conclude, the cellular mechanisms responsible for liver cancer initiation 
and progression need to be clearly defined to facilitate the detection of reliable 
tumor markers for diagnostic and prognostic applications and the development of 
new targeted therapy approaches for liver cancer.
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Abstract: There is growing evidence that supports the role of the tumor microenvi-
ronment in the development and progression of hepatocellular carcinoma. The 
tumor microenvironment is composed of cellular components, bioactive substances, 
and extracellular matrix comprising of proteins such as collagens, proteoglycans, 
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and the linear glycosaminoglycan hyaluronan. Hepatocellular carcinoma generally 
arises from fibrotic or cirrhotic liver, characterized by alterationin extracellular 
matrix components. In addition, non-tumoral cells such as mesenchymal stem/ 
stromal cells (MSCs) are typically recruited to the injured or hypoxic area within the 
tumor. Besides the secretion of immunoregulatory proteins, growth factors, and 
cytokines, MSCs and hepatic stellate cells can also synthesize hyaluronan, amongst 
other components, which affects several tumor-associated processes. The tumor 
microenvironment also contains different types of immune cells. A key component 
in the genesis of hepatocellular carcinoma is the macrophages, as tumor-associated 
macrophages (TAM). This chapter provides an overview of the interaction of MSCs-
hyaluronan-TAMs and tumor cells, and how this interaction potentially contributes 
to the development and progression of hepatocellular carcinoma.

Keywords: hepatocellular carcinoma; hyaluronic acid; macrophages; mesenchy-
mal stem cells; tumor microenvironment

INTRODUCTION

The biology of a tumor can only be understood by studying different cell types 
within the tumor microenvironment (TME) (1). The interaction between tumor 
cells and the associated stroma plays a crucial role in the initiation and progres-
sion of a tumor (2). The heterogeneity of tumors is based not only on the genomic 
profile but also on their microenvironment composition (2). The microenviron-
ment actively regulates tumor initiation, its progression, metastasis, and therapy 
response (3). The extracellular matrix (ECM), as part of the TME, is essential for 
asymmetric cell division and maintenance of tissue polarity; it may block or facili-
tate cell migration, determine the direction of cell–cell communication, and bind 
to growth factors to prevent their free diffusion (4). Changes in ECM support the 
development of hepatocellular carcinoma (HCC), and the complexity of TME and 
therapeutic failures may be explained, in part, by alterations of components of the 
ECM. The development of HCC is associated with prolonged inflammation caused 
by chronic virus infection, alcoholic exposure, or metabolic diseases. The inflam-
matory microenvironment facilitates the transformation of normal liver cells such 
as hepatocytes, stem, immune, and stellate cells by providing a suitable environ-
ment for the development and progression of a tumor (5, 6). HCC is a primary 
liver tumor that derives, in most cases, from hepatocytes and corresponds to 
approximately 90% of all liver cancers (7, 8). Since cholangiocarcinoma, hepato-
blastoma, and angiosarcoma are less common than HCC, they are not discussed 
in this chapter.

THE TUMOR MICROENVIRONMENT

The TME is composed of non-cellular and cellular components (4). The ECM is 
the non-cellular component. The cellular component, apart from tumor cells, 
consists of a variety of cells including tumor-associated fibroblasts (TAFs), 
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angiogenic endothelial cells, bone marrow-derived cells, adipocytes, and cells of 
the immune system (Figure 1) (9). In HCC, hepatic stellate cells (HSCs) are also 
part of this cellular microenvironment (10). The bidirectional interaction between 
the tumor and its microenvironment greatly affects tumor initiation, progression, 
and drug resistance, and a better understanding of this interaction may enable the 
identification of novel targets for tumor therapy (11, 12).

Non-cellular compartment

During embryonic development and organ homeostasis, the composition of ECM 
is tightly regulated. However, in diseases such as cancer, it is usually deregulated 

Figure 1 Schematic representation of the role of a HA-rich microenvironment in cancer 
progression. The TME is composed of non-tumor cells, such as fibroblasts, endothelial cells, 
MSCs, adipocytes, and infiltrating immune cells, and of non-cellular compartments, including 
secreted soluble factors and solid-state structural ECM. HA is an abundant component of the 
ECM that recruits and activates stromal cells to stimulate cell proliferation, migration, 
differentiation, angiogenesis, immune effects, and therapy resistance. HA induces intracellular 
signals through several receptors, mainly CD44, whose expression is associated with the 
characteristics of CSCs. Accumulation of HA in the tumor stroma drives the differentiation and 
activation of CAFs. CSCs are described as tumor initiators and are associated with tumor 
proliferation, drug resistance, and metastasis, whereas some cells such as MSCs can be 
integrated into the TME after recruitment and interact with tumor cells to promote tissue 
homeostasis and repair processes. The TME contains several types of immune cells including 
macrophages, neutrophils, dendritic cells, granulocytes, and lymphocytes. TAMs usually have a 
pro-tumoral action since they can promote tumor neovascularization and have an 
immunosuppressive action. CAF, cancer-associated fibroblasts; CSC, cancer stem cells; ECM, 
extracellular matrix; HA, hyaluronan; MSC, mesenchymal stem/stromal cells; TAM, tumor-
associated macrophages; TME, tumor microenvironment.
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and disorganized. Abnormal ECM alters the behavior of stromal cells and, as a 
consequence, supports and leads the generation of the TME (4). One of the com-
ponents of ECM that is altered in tumors is the glycosaminoglycan hyaluronic 
acid (HA). HA is a linear molecule composed of disaccharide units of N-acetyl 
glucosamine and glucuronic acid; it is synthesized by hyaluronan synthases and 
degraded by hyaluronidases and glycosylphosphatidylinositol (GPI)-anchored 
hyaluronidase PH-20 (13, 14). Activities of these enzymes are shown to greatly 
influence tumor growth and metastasis (15). HA is overexpressed in both cir-
rhotic and liver tumor tissues, promoting tumor progression (16, 17). Several 
pieces of evidence indicate that HA inhibition by 4-methylumbelliferone (4-MU), 
a specific HA synthesis inhibitor, delays HCC growth (18, 19). Besides, the use of 
recombinant hyaluronidase as an adjuvant therapy in different types of cancer 
shows the complex relationship between hyaluronan synthases and hyaluroni-
dases in maintaining HA expression (20). HA is an abundant component of the 
ECM that mediates cell proliferation, migration, and differentiation during inflam-
mation and tumor development. Most malignant tumor tissues contain elevated 
levels of HA compared to their normal counterparts (21). Remarkably, HA levels 
rise in the serum of patients with liver injury, and it is proposed as a biomarker for 
high-score fibrosis and cirrhosis (16). HA is a ubiquitous molecule with high con-
centrations found in the synovial fluid, vitreous humor, skin, and umbilical cord. 
At homeostasis, HA is mostly present in a high molecular weight form, ranging 
from 0.5x106 to 107 Da, and to a lesser extent in a low molecular weight form, 
ranging from 104 to 0.5x106 Da. The low molecular weight form is mostly present 
in pathological conditions such as inflammation and cancer (22, 23). HA acts by 
inducing intracellular signals through several receptors: toll-like receptor 4, lym-
phatic vessel endothelial hyaluronan receptor 1, and receptor for hyaluronan-
mediated motility (24, 25). The main receptor, CD44, is also considered a marker 
of cancer stem cells (CSC). It is encoded by the CD44 gene, which is a large and 
highly conserved gene (20 exons, out of which 10 can undergo alternative 
 splicing). It has been demonstrated that the interaction between HA and CD44 
promotes tumor progression in different solid tumors, including HCC (14, 26).

Proteoglycans (PGs) are composed of at least one linear negatively charged 
polysaccharide chain, such as heparan sulfate, chondroitin sulfate, keratan/ 
dermatan sulfate or heparin, that is covalently attached to a core protein (27). In 
healthy tissues, PGs are essential for structural scaffolding in the ECM, interac-
tions with cytokines and growth factors and their receptors, and inducing cell 
signaling (28). During carcinogenesis, the expression of PG is markedly altered to 
promote cancer cell growth, survival, adhesion, migration, and angiogenesis (28).

Cellular components

Several types of cells belonging to the TME have been described as key regulators 
of different aspects of the tumor process. CSCs are described as tumor initiators 
and are associated with tumor growth, drug resistance, and metastasis (29). HSCs 
are key cells in responding to the inflammatory state in the liver and are the prin-
cipal cells that promote ECM remodeling (30), whereas MSCs can be attracted 
into the TME and, after recruitment, can interact with tumor cells to promote 
tumor modifications (12, 31). CSCs have a constant interaction with their specific 
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microenvironments called niches. CSC niches are formed by different cellular 
components and regulated by secreted factors such as cytokines and growth fac-
tors (12). CSCs exhibit the capacity for self-renewal, pluripotency, tumorigenicity, 
and resistance to therapy. Many cancer therapies eliminate most of the tumor cells 
but ultimately fail because they do not eliminate CSCs fully, which survive to 
regenerate new tumors. CSCs possess several intrinsic mechanisms of resistance 
to current chemotherapeutic drugs (1, 32, 33). They have a high-level expression 
of ATP-binding cassette (ABC) transporters, which are correlated with multidrug 
resistance. ABC transporters reduce the cellular accumulation of various types of 
therapeutic agents, and therefore, CSCs become more resistant to even higher 
doses of anti-tumor agents (34).

MSCs represent a heterogeneous population of multipotent progenitors first 
described in bone marrow but present in almost all vascularized organs. Due to 
their high plasticity, they show various functions according to the requirements of 
that particular tissue. These include, among others, homing to sites of tissue 
 damage, the initiation of repair processes, and the regulation of tissue  homeostasis. 
Tumor growth usually induces tissue remodeling, creating an inflammatory envi-
ronment. Consequently, MSCs can be recruited to these tumor sites and activated 
to have repair and immunomodulation functions. Several factors such as interleu-
kin (IL)-8, monocyte chemoattractant protein-1, growth-regulated oncogene, and 
autocrine motility factor, produced by the HCC, are known to attract and recruit 
MSCs (35, 36). It is known that MSCs can secrete several growth factors, cyto-
kines, chemokines, and ECM components (37). Once within the tumor, direct 
and indirect interactions between MSCs, the ECM and cancer cells increase plas-
ticity within the tumor tissue and its microenvironment.

The TME also contains several types of immune cells such as macrophages, 
neutrophils, dendritic cells, T cells, regulatory T cells (Tregs), natural killer (NK) 
cells, and eosinophils (37). Studies have shown that changes in the number and 
function of these immune cells contribute to the development, tolerance, and 
progression of HCC (38–43). Macrophages are the major component of the 
immune infiltrate that is present in tumors (44, 45). Several studies indicate that 
tumor-associated macrophages (TAMs) usually have a pro-tumoral action, since 
they can stimulate angiogenesis, increase tumor cell invasion and motility, and 
have an immunosuppressive action (44, 45). In the case of HCC, TAMs, as infil-
trated monocytes and resident Kupffer cells, are characterized as the most impor-
tant immune cell type that promotes tumor invasion and metastasis (37).

THE TUMOR MICROENVIRONMENT IN HCC DEVELOPMENT

Hepatocarcinogenesis is a multifactorial process. Most HCC cases are associated 
with alcohol abuse, nonalcoholic steatohepatitis (NASH), and chronic infection 
with hepatitis B virus (HBV) or hepatitis C virus (HCV) inducing an inflammatory 
process followed by regeneration. Persistent hepatic injury and concurrent regen-
eration could produce an environment that eventually leads to the formation of 
hypoxia and inflammation, which are crucial features of HCC microenvironment 
(5, 6, 46). HCC has a heterogeneous population of CSC, which are considered to 
be tumor-initiating cells. It has been reported that 28–50% of HCC cells express 
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progenitor cell markers (47). Many potential origins of hepatic CSCs have been 
described. They may result from genetic and epigenetic modifications of hepato-
cytes, hepatic oval cells/liver progenitor cells (LPCs), or circulating bone marrow 
cells. These transformed cells, in combination with deregulated microenviron-
ment, result in a distinct lineage of CSCs that have stem-like features (Figure 2). 
Some cell surface markers for CSCs include CD44, CD133, CD90, CD105, CD45, 
CD13, and epithelial cell adhesion molecule (EpCAM) (5). CSCs have a very 
 complex signaling network that includes crosstalk with different non-tumoral 
cells. During tumor development, multiple immunosuppressive molecules are 
released from cancer cells, which subsequently contribute to the establishment of 
an immunosuppressive TME (5, 48). LPCs are small cells (7–10 µm in diameter) 
with basophilic character. They have small ovoid nucleus and a high nuclear-
cytoplasmic ratio. LPCs are heterogeneous, hardly detectable in healthy liver, but 

Figure 2 Stem and immune cells associated with tumor development. HCC is composed of a 
heterogeneous population of CSCs, which might derive from hepatocytes, progenitor cells 
(oval cells), or other adult stem cells, like bone marrow cells. CSCs have a very complex 
signaling network that includes crosstalk with different non-tumor cells, such as immune 
cells. The tumor microenvironment contains several types of non-tumor cells: macrophages, 
Kupffer cells, stellate cells, dendritic cells, T cells, Tregs, and NK cells. Changes in the number 
and function of these cells contribute to the development of immune tolerance and 
progression of HCC. Tumor-associated macrophages are characterized as the most important 
immune cell type that promotes tumor invasion and metastasis. Similar to cancer cells, 
macrophages such as Kupffer cells secrete several types of cytokines and factors crucial for 
HCC progression, metastasis, and drug resistance. CSC, cancer stem cells; EGF, epidermal 
growth factor; HCC, hepatocellular carcinoma; IL-6, interleukin 6; IL-8, interleukin 8; MMPs, 
matrix metalloproteinases; MSC, mesenchymal stem/stromal cells; NK, natural killer; TGF-β, 
transforming growth factor-β; TNF-α, tumor necrosis factor-α; Tregs, regulatory T cells; VEGF, 
vascular endothelial growth factor.
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are activated in chronic liver injury. The origin of these cells is still debatable. The 
inhibition of LPCs correlates with reduced tumor development, and their activa-
tion and proliferation are linked to HCC development. In addition, they have 
been implicated in hepatocyte regeneration (49, 50).

The role of MSCs in tumor initiation is still controversial, particularly in HCC. 
In vitro evidence indicates that during MSC differentiation into hepatocytes, 
 aberrant activation of Wnt/β-catenin is associated with a tumoral phenotype, 
involving increased proliferation, elevated proliferating cell nuclear antigen 
expression, cell cycle alteration, and spheroids formation (51). Another report 
suggests that MSCs may initiate HCC. The HCC cell line SK Hep-1 has been 
shown to display MSCs-like features and the capacity to differentiate into osteo-
genic and adipogenic lineages (52). Although these in vitro data indicate the 
potential role of MSCs in hepatocarcinogenesis, in vivo evidence to clarify this 
potential process is lacking.

Chronic inflammation is a risk factor for the development of tumors (53). 
HCC frequently arises in chronically inflamed liver. Sustained inflammation is 
characterized by a continuous activation of immune cells that release free radicals 
that can damage the DNA and cause a neoplastic transformation. The TAMs 
derived from Kupffer cells or circulating monocytes are recruited into the tumor 
tissues by chemokines and other factors secreted by tumor cells and the inflam-
matory cells present in the TME (37). TAM-derived cytokines and growth factors 
play a key role in the initiation of HCC. One of the most important TAM-derived 
cytokines is IL-6, which triggers pathways that promote proliferation and survival 
of hepatocytes, stimulating the initiation and development of HCC. It has been 
reported that IL-6−/− mice had lower incidence of HCC tumors and longer survival 
than wild-type mice (54).

The changes in ECM and its components allow the tumoral transformation of 
hepatocytes. It has been observed that patients with liver fibrosis and advanced 
cirrhosis present high levels of HA in serum (16). In an experimental model that 
mimics liver injury or fibrosis (18), HA was detected in injured/fibrotic liver but 
not in normal tissues. HA is synthesized by the synovial lining cells, HSCs, and 
MSCs during wound healing of the liver (16). HA is also associated with the stem 
cell niche. The ECM of this microenvironment is composed of HA among other 
components such as laminin, collagen, sulfated chondroitin-sulfate, and heparin-
sulfate proteoglycans that maintain stemness (55). Liver injury induces the expres-
sion of HA; during the chronic process, HA elevation is continuous, allowing the 
interaction with the potential cancer stem cell marker CD44, which actively pro-
motes tumor initiation (56). Lee et al. showed that HA-based multilayer films 
mimicked the stem cell niche and selected and enriched for liver CSCs (57). 
Besides, HA could be involved in HCC initiation, given its association with IL-6 
expression. Particularly in cirrhotic liver, IL-6 is highly produced by Kupffer cells, 
and together with other inflammatory mediators, IL-6 has the ability to induce 
HSC trans-differentiation to myofibroblasts (58, 59). Moreover, IL-6 is essential 
for the expansion of mutated hepatocytes (60). It has been reported that IL-6 
binds selectively to HA, suggesting that this retention and concentration near the 
site of secretion favor its paracrine and autocrine activities, contributing to tumor 
development. In addition, the inhibition of HA by 4-MU decreases IL-6 produc-
tion in TME significantly, reducing tumor growth (18, 61). Recently, in a model of 
HBV-transgenic mice, the inhibition of HA by 4-MU was accompanied by a 
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reduction of CSC markers CD44, CD133, CD90, and EpCAM during hepatocar-
cinogenesis (62).

Other key players in cancer pathogenesis are PGs. Tumoral tissues have dif-
ferential PG expression patterns, which are closely associated with their differen-
tiation and biological behavior. Furthermore, during liver carcinogenesis, HSCs 
become activated; they proliferate and synthesize excess ECM proteins in most 
types of chronic liver diseases (63). Decorin is a member of the small leucine-rich 
proteoglycan (SLRP) gene family, containing a single chondroitin sulfate (CS) or 
dermatan sulfate chain, and is expressed by fibroblast and myofibroblasts (64). 
Syndecan molecules (syndecan-1, syndecan-2, syndecan-3, syndecan-4) are a 
major family of cell-surface heparin sulfate (HS) PGs. They mainly bear HS chains, 
although some members can be additionally substituted with CS chains (65, 66). 
In healthy liver, decorin levels are generally low. However, an increased decorin 
expression was observed in the connective tissue septa during fibrogenesis and in 
chronic liver injury (67). In this process, decorin colocalizes with high amounts 
of transforming growth factor beta 1 (TGF-β1), which is a key stimulator of fibro-
genesis (68). In normal human liver, syndecan-1 is expressed in sinusoidal endo-
thelial cells (69). As cirrhosis progresses, syndecan-1 expression is increased, and 
its localization extended to the entire hepatocyte membrane surface and expressed 
on the surface of biliary epithelial cells (70). Elevated syndecan-1 expression 
appears to be more closely associated with liver cirrhosis, rather than malignant 
transformation (65).

THE TUMOR MICROENVIRONMENT IN HCC PROGRESSION 
AND METASTASIS

HCC is known to harbor different populations of cancer cells with stem cell 
properties, which can be identified by different cell surface markers, such as 
EpCAM, CD44, CD90, and CD133. Some studies have shown that EpCAM+ and 
CD90+ cells are two independent subpopulations. EpCAM+ cells have hepatic 
epithelial stem cell features and are associated with a high tumorigenic capacity, 
while CD90+ cells have mesenchymal-vascular endothelial cell features and 
metastatic propensity. On the other hand, it has been shown in HCC cell lines 
that express CD133 participate in cell survival through the regulation of glucose 
uptake and autophagy. These studies suggest that CD133+ CSCs could use 
autophagy to escape the selective pressure of nutrient deficiency and the hypoxic 
environment in HCC (71–73). CSCs originating from LPCs were found to have 
differential expression of a number of microRNAs (miRNAs). These miRNAs 
were mostly implicated in angiogenesis, post-transcriptional protein modifica-
tion, and small molecule metabolism. Differential expression of miRNAs dem-
onstrates crucial roles of LPCs during the progression of HCC (71, 73). Several 
signaling pathways, including Wnt/β-catenin, BMI-1, TGF-β, Notch, and 
Hedgehog, are known to be stem cell regulators and to accelerate tumorigenesis. 
These, as well as some additional factors such as EpCAM, Lin28, or miR-181, 
interact with CSCs and enhance the progression of HCC (6, 71, 72). On the 
other hand, CSCs also benefit from other processes such as angiogenesis. In fact, 
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HCC is one of the most vascularized solid tumors with particular vascular 
anomalies (48, 72).

Once a tumor is established, MSCs can be recruited from a distant place of the 
same organ or peripheral tissues (e.g., bone marrow) into the TME. Studying the 
function of the recruited MSCs on the tumor development has been of great 
interest during the past decade. Studies that co-injected mice with exogenous 
MSCs (isolated from bone marrow, adipose tissue, or umbilical cord from healthy 
donors) and tumor cells produced equivocal results. While some reports indi-
cated that MSCs promoted tumor development, others demonstrated that MSCs 
were able to inhibit tumor growth (74). The discrepancies of results could be 
related to several factors including the tumor type, the heterogeneity in MSC 
(source, donor age, culture conditions), and the timing at which MSCs are intro-
duced into the TME. These discrepancies remain true for HCC as well. The first 
reports indicated that MSCs inhibited HCC growth in vitro and in vivo (75, 76). 
However, other results demonstrated either a pro-tumorigenic effect (77, 78) or 
a null effect of MSCs on HCC growth (35, 36, 79–82). The inhibition of tumor 
growth was associated with Wnt, NF-κB, and PI3-K/Akt signaling pathways 
(75, 83), whereas enhancement of microvessel density was observed in the case 
of tumor progression (77, 78). Not only MSCs but also their secretome affect 
HCC development. Conditioned medium from human fetal MSCs expressed 
insulin growth factor binding proteins that could bind to insulin-like growth fac-
tors (IGFs). This leads to reduced IGF-1R and PI3K/Akt activation and induces 
cell cycle arrest (84). Extracellular vesicles derived from human bone marrow-
derived MSCs have also been demonstrated to inhibit HCC growth in vitro and 
in vivo (85, 86).

The role of MSCs in tumor metastasis has also been studied. Li et al. demon-
strated in a subcutaneous model of HCC that MSC-treated mice exhibited larger 
tumors but a decreased number of lung metastases. This effect seemed to be related 
to TGF-β1 downregulation (87). Moreover, repeated inoculation of MSCs in a 
mouse model of high metastatic HCC resulted in an inhibitory effect on HCC 
growth at 3 weeks after MSC engraftment and downregulation of metastasis-related 
factors (88). It was also described that MSCs exposed to an inflammatory microen-
vironment promoted HCC metastasis through TGF-β-induced epithelial- 
mesenchymal transition (EMT) in tumor cells (89). Efforts have been made to 
isolate and characterize MSCs from HCC tumors. Yan et al. isolated MSCs from 
human HCC tissues and demonstrated that the co-culture of these MSCs with 
HCC cells enhanced tumor formation and increased liver and lung metastasis. 
Tumor-associated MSCs produced several trophic factors including S100A4 that 
upregulated miR-155, leading to HCC proliferation and invasion (90). Similar data 
from Hernanda et al. indicated that conditioned medium from MSCs isolated from 
HCC tissues had trophic effects on the Huh7 hepatoma cell line in vitro and in vivo 
(91). It was also demonstrated that HCC-associated MSCs promoted EMT and 
liver tumorigenesis through the expression of a lncRNA-MUF (MSC-upregulated 
factor) in HCC tissue (92). These data suggest that MSCs can be educated by the 
tumor to favor its own growth. However, due to the heterogeneity of MSCs, and 
therefore the difficulty to investigate the endogenous MSCs, more studies are nec-
essary to establish the precise role of these cells on tumor development.

The persistent inflammatory milieu not only promotes tumor development 
but also accelerates tumor progression, stimulates the formation of new blood 
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vessels, and remodels the ECM. Thus, TAMs are also considered as crucial players 
in tumor progression. In HCC, TAMs stimulate invasion, angiogenesis, and metas-
tasis through the release of several mediators, including IL-6, IL-8, TNFα, TGFβ, 
EGF, VEGF, MMP-2, and MMP-9(93). These factors also promote EMT, which is a 
crucial event for tumor progression and metastasis (18, 22, 23, 37). In addition, 
infiltrating monocytes in HCC express high levels of programmed cell death-
ligand 1 (PD-L1) that binds to PD-1 on CD8+ T cells, suppressing its anti-tumoral 
cytotoxic activity (94).

The interaction of HA with its main receptor, CD44, promotes tumoral signal-
ing involved in cell proliferation, invasion, chemoresistance, EMT, and angiogen-
esis (23). Hepatic HA accumulation may be linked to increased tumor tissue 
stiffness (95), which is associated with HCC development. HA was demonstrated 
to facilitate the aggressive phenotype of HCC cell lines, promoting cell prolifera-
tion, metastatic potential, and aerobic glycolysis switch in MHCC97H and HepG2 
cells, both in vitro and in vivo (96).

PGs can regulate the bioavailability and activity of hormones, growth factors, 
cytokines, and their respective receptors which in turn can affect gene expression, 
tumor phenotype, tumor progression, and recurrence rates in specific tumor types 
(97). During angiogenesis, decorin induces endothelial cell sprouting and acti-
vates intracellular signal transduction pathways. Decorin interacts with several 
angiogenic growth factors, including VEGF, platelet-derived growth factor, fibro-
blast growth factor, IGF, connective tissue growth factor, and hepatocyte growth 
factor (98). In addition, decorin interacts with TGF-β and neutralizes its activity, 
preventing the binding to its receptor, and therefore plays a significant role in 
tumor progression and angiogenesis (67). Decorin can also play a pro-angiogenic 
role by facilitating endothelial cell adhesion and migration on type I collagen (99).

TARGETING THE MICROENVIRONMENT TO INHIBIT 
TUMOR GROWTH

TAM-targeted therapies are usually aimed at: (i) eliminating TAMs, (ii) blocking 
the recruitment of circulating monocytes, and/or (iii) reprograming TAMs to an 
anti-tumor phenotype. For example, it was reported that in mouse models of 
HCC, treatment with the tyrosine kinase inhibitor sorafenib reprogrammed TAMs 
and promoted the stimulatory activity of hepatic NK cells (100). Zoledronic acid 
was demonstrated to have an anti-tumor effect by targeting TAMs through phago-
cytosis by macrophages and induction of apoptosis (101). The therapy combining 
these two drugs, sorafenib and zoledronic acid, is currently being evaluated for 
the treatment of advanced HCC in phase II clinical trials (NCT01259193). 
Another strategy for targeting TAMs is inhibition of glypican-3, a proteoglycan 
that promotes the recruitment of macrophages into the tumor, by specific  antibody 
(102). This strategy is currently in phase I clinical trials for advanced HCC (103). 
In addition, there are two more trials (NCT02723942 and NCT02395250) that 
use a similar strategy. So far, the most critical issue that TAM-targeted therapies 
need to overcome is the need to repolarize macrophages towards an anti-tumor 
behavior without causing any adverse events.

CP-007.indb   38 10/23/19   3:54 PM



Microenvironment in Hepatocellular Carcinoma 39

The abnormal metabolism of HA and its accumulation in the injured liver or 
an established tumor have led to the consideration that inhibition of HA synthesis 
may avoid tumor progression and metastasis. Several reports propose the use of 
4-MU as an inhibitor of HA synthesis or the targeting of its receptor CD44 as 
anticancer treatments. The use of CD44 antisense oligonucleotide increased che-
mosensitivity to doxorubicin significantly and induced apoptosis and necrosis in 
HCC cell lines (104). The treatment of HCC cells with 4-MU significantly reduced 
tumor cell proliferation and induced apoptosis, without affecting normal hepato-
cytes. Systemic treatment with 4-MU resulted in the induction of necrosis and 
reduction in the number of tumor satellites in an orthotopic fibrosis/HCC mouse 
model. Mice treated with 4-MU had reduced levels of fibrosis and decreased the 
number of activated HSCs when compared with controls (18). This antitumor 
property could be associated with an inhibition of angiogenesis and decrease in 
IL-6 production (19). Furthermore, animal survival was increased when CD133low 
HCC cells, generated upon 4-MU treatment, were injected in a metastatic HCC 
model (105).

There is clear evidence that PG composition changes with liver cancer develop-
ment. Thus, it could constitute targets for potential therapeutic agents and diag-
nostic biomarkers. Decorin represents a powerful tumor cell growth and migration 
inhibitor by modulating both tumor stroma deposition and cell signaling pathways 
(106). Soluble decorin acts as a tumor suppressor mainly by downregulating vari-
ous receptor tyrosine kinases (such as EGFR, Met, IGFR, and VEGFR), β-catenin, 
and Myc expression, and upregulating p21WAF1/CIP1 (106, 107).

CONCLUSION

The HCC microenvironment is composed of several tumoral and non-tumoral cell 
types, and ECM components that are in continuous communication and interac-
tion with each other. The cellular components include CSCs, LPCs, MSCs, and 
various populations of immune cells including TAMs. The major ECM compo-
nents that are altered in HCC are GAGs such as hyaluronan, and PGs including 
decorin and syndecan. Their interactions make an important contribution to 
tumor progression by modulating tumor cell properties. The data generated in 
preclinical models and clinical trials targeting the TME, especially these molecules 
and cell types, show highly promising results; however, their clinical utility is yet 
to be ascertained. In addition, adverse events of such therapies need to be cau-
tiously evaluated. A better knowledge of the microenvironment–tumor cell inter-
actions could be useful and beneficial for the development of new therapeutic 
approaches for HCC.
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Abstract: In vitro models of the liver have led to important insights into the pathogen-
esis of liver disease. These models are essential tools in the discovery and preclinical 
stages of drug development. The clinical application of these models is also emerging 
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INTRODUCTION

The large burden of liver disease and primary liver cancer along with the manage-
ment difficulties encountered have provided the impetus to pursue the use of 
representative in vitro models of liver function, response to injury, and develop-
ment of malignancy. Improved 2D and 3D in vitro disease models would enhance 
our understanding of the cause of liver injury and cancer, increase the efficacy of 
preclinical drug discovery, and be a useful clinical tool for precision medicine. The 
increasing popularity of organ-on-a-chip technology and improvements in 3D cell 
cultures has enabled unique insights into liver disease (1, 2). This chapter focuses 
on the current types of in vitro liver models, the opportunities and limitations of 
their uses in drug discovery, basic research and clinical management, as well as 
new directions of this field.

IN VITRO LIVER MODELS

In this overview, in vitro models will be defined as the culturing of isolated tis-
sue components of an organ, while preserving many aspects of the in vivo envi-
ronment. The chief purpose of in vitro models in research and medicine is to 
minimalize experimental variables to effectively isolate different organ compo-
nents or structures for study under well-controlled, reproducible, and easily 
assessed conditions. This overview will focus on 2D and 3D models of the liver 
based on organotypic characteristics, including cell type, liver function, and 
zonation, and likely application in basic research, drug discovery, and clinical 
practice (Figure 1).

The liver has a heterogeneous cellular composition that includes hepatocytes 
(the target of most disease and comprise the majority of the liver in quantity and 
volume), Kupffer cells (liver-resident macrophages), hepatic stellate cells, liver 
sinusoidal endothelial cells (LSECs), biliary epithelial cells, fibroblasts, immune 
cells, and adult stem cells. Important liver functions to consider include: (i) the 
metabolism of endogenous substrates and exogenous compounds; (ii) the regu-
lation of amino acids, carbohydrates, and fatty acids; (iii) synthesis of proteins 
(such as albumin or transferrin) and bile synthesis; (iv) immune activation upon 
injury; (v) the biotransformation of xenobiotics; and (v) the resilience to senes-
cence (1, 2). The cytochrome P450 (CYP450) family of abundant enzymes is 
also significantly important to liver function as they mediate the metabolism of 
drugs (3).

The lobules of the liver are complex with perivenous, intermediary, and peri-
portal zones (4). The intercellular oxygen concentration of the lobule is 15–20 mm 
Hg in the perivenous zone compared to 45–50 mm Hg in the periportal zone (5). 
Metabolic processes, including glucose uptake, glycolysis, amino acid synthesis, 
bile acid production, and glucuronidation, are all greater in perivenous cells, which 
also have the greater CYP450 enzyme activity. By contrast, oxygen uptake, glucose 
delivery, gluconeogenesis, urea synthesis, fatty acid  oxidation, cholesterol synthe-
sis, and sulfation are all comparatively greater in periportal cells. Non-parenchymal 
cells such as bile duct cells and hepatic stellate cells are more abundant in the 
oxygen-rich periportal zone. These observations are important to liver modeling 
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as zonation is important and disrupted in liver diseases, especially diseases associ-
ated with hypoxia and reactive oxygen species like non-alcoholic fatty liver dis-
ease (NAFLD) and hepatocellular carcinoma (HCC) (6).

Increasing the efficacy of drug development and toxicity testing by improv-
ing in vitro models is of great interest to researchers and the pharmaceutical 
industry (7). In 2015, the cost of bringing a new drug to market was estimated 
at 2.6  billion USD (8), with the major contributor to this cost being the very low 
clinical success rate of new compounds (approx. 11.8%) (9). This high burden 
of cost necessitates the exploration of new approaches, including advances in 
preclinical methods, which select new drug interventions for clinical trials.

In the discovery and preclinical development stages of drug development, can-
didates are identified by correlating drug responses in cell cultures and preclinical 
animal models—usually one rodent and one non-rodent species (10). Screening 
for absorption, distribution, metabolism, excretion, and toxicity (ADMET screen-
ing, also commonly referred to as ADME or the study of drug metabolism and 
pharmacokinetics) optimizes preclinical testing by enabling better understanding 
of the pharmacokinetic and pharmacodynamic properties of drug candidates (11). 

Figure 1 Overview of 2D and 3D in vitro models of the liver. Flow diagram indicates the in 
vitro models of the liver, their readouts, and applications. Each model was categorized by the 
type of sample it is derived from and whether it is 2D or 3D model.
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Desirable drug-like properties identified by ADMET screening include adequate 
absorption and distribution, low metabolism, complete elimination from the 
body, and a minimal toxicological risk (10).

A significant challenge in this field is predicting human-specific liver toxic-
ity (12). Animal models do not always reflect human toxicity due to differences in 
physiology, interspecies metabolic capacities, and disease adaptations. Similarly, 
in vitro models often do not accurately predict toxicity due to non-linear dose–
toxicity relationships, unclear mechanisms, non-organ-specific toxicity, as well as 
adverse downstream effects (1, 12). Drug-induced hepatic injury is the most 
 frequently cited reason for approved drugs being removed from the market (13). 
Current 2D in vitro assays are based on cell lines such as HepG2 that have reduced 
metabolic capacities compared to primary hepatocytes, while the use of primary 
human hepatocytes suffers from high donor-to-donor variation and cultures only 
retain in vivo characteristics for a short time ex vivo (11). The effect of improving 
these in vitro assays may potentially lead to more effective and rapid pre-clinical 
drug development.

After the completion of the human genome project in the early 2000s, there 
was significant optimism for the potential of genomic medicine to revolutionize 
the diagnosis and treatment of many illnesses, in particular, the clinical applica-
tion of genetic predictors to better understand patient risks of disease and respon-
siveness to potential designer drugs, based on targeting specific molecular 
pathways (14). In 2011, the US National Research Council coined the term 
“ precision medicine” to inspire a new taxonomy for disease via a knowledge net-
work. They defined precision medicine as 

“The tailoring of medical treatment to the individual characteristics of each 
patient […] to classify individuals into subpopulations that differ in their 
susceptibility to a particular disease or their response to a specific treatment. 
Preventative or therapeutic interventions can then be concentrated on those 
who will benefit, sparing expense and side effects for those who will not. This is 
different from personalized medicine, which refers to ‘an approach to patients 
that considers their genetic make-up but with attention to their preferences, 
beliefs, attitudes, knowledge and social context’.”  (15)

The disease treatment strategies that have so far benefited the most from preci-
sion medicine are treatments for cystic fibrosis and cancer management using 
genome sequencing to enhance patient care by improved diagnostic sensitivity, 
allowing for more precise genetic therapeutic targeting (16). Since the early suc-
cess of the Bcr-Abl kinase inhibitor Imatinib for targeted therapy for chronic 
myeloid leukemia, oncology has moved towards molecular classification (16), but 
currently there are only 11 genomic alterations known to drive tumor progression 
in different tissues matched directly with approved targeted therapies (17).

CONVENTIONAL 2D IN VITRO LIVER CELL CULTURES

Essentially, cell biology relies on 2D models generated from dissociated cell cul-
tures that are expanded on plastic surfaces, often supported by extracellular 
matrix (ECM) scaffolding. These are primary cell cultures derived directly from 
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harvested tissue or immortalized cell lines (primary cells genetically transformed 
to produce rapidly proliferating, uniform, easily cultured, artificial phenotypes). 
A major reason for the popularity of dissociated cell cultures is that the majority 
of mammalian cells can be expanded into adherent colonies on culture plates, and 
these have proven to be relatively low cost and easy to manipulate and maintain. 
A high-throughput cultured monolayer of cells receives a consistently homoge-
nous amount of nutrients, growth factors, and exposure to oxygen. Commercialized 
cell lines are available across a diverse range of tissue types, and there is extensive 
commercial support for these cultures, such as the availability of different culture 
media and consumables. Furthermore, there are various options for genetic 
manipulation, such as CRISPR, gene transfer, insertion, deletion, silencing, and 
cell fusion (1).

Primary cell cultures

Human hepatocyte primary cell cultures are a physiologically relevant model for 
studying drug biotransformation and toxicity (18, 19). However, cells grown in 
this way have a number of issues. They only maintain their wild-type characteris-
tics for a limited time when cultured on 2D surfaces because of de-differentiation. 
In addition, in vitro manipulation often results in a loss of wild-type characteris-
tics, slow proliferation, changes in metabolism, and early senescence after a 
 limited number of passages (18, 19). Therefore, cell cultures require successive 
tissue harvests, which incur higher associated costs. Moreover, the harvesting of 
tissue is susceptible to contamination from non-applicable cell types, thereby 
compromising the model’s integrity (1).

The ECM has a profound effect on primary cell function, differentiation, sig-
naling, and morphology (20, 21). For example, culturing primary hepatocytes 
with the scaffold matrix Matrigel® induces gene expression, which more closely 
resembles liver tissue in vivo. It also improves cellular morphology by enhancing 
cuboidal shape and results in cells with clearly defined cell borders that allow the 
formation of highly organized cellular networks (22).

Primary hepatocyte cell cultures have been useful for understanding the 
mechanisms in liver regeneration (23) and for discerning the relationship 
between the liver cytoskeleton and liver-specific protein expression (24). 
Similarly, primary cultures of hepatic stellate cells have been instrumental in 
understanding the causes of liver fibrosis and identification of key fibrogenic 
mediators (25, 26). In drug testing, primary human hepatocyte cell cultures 
are considered the “gold standard” because they display many phenotypic 
functions of the liver when compared to other in vitro models (27, 28). 
However, this approach has been heavily criticized as suboptimal. The com-
mon issues include: (i) cells being cultured at densities of only approximately 
1% of physiologically normal tissue densities, thereby impairing intercellular 
signaling; and (ii) cultures being non-homeostatic as conditions are optimized 
for rapid growth, thereby preventing correct cell differentiation (29, 30). 
Primary hepatocytes experience a decline in CYP450 expression when grown 
in vitro (31), while the transcription of common genes is unaffected leading to 
a decrease in CYP450 proteins and activity, significantly limiting the translat-
ability of this model (32).
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Sandwich-cultured hepatocytes

Culturing primary hepatocytes between two layers of collagen, termed sandwich-
cultured hepatocytes (SCH), results in retained cellular polarity with correct local-
ization of basolateral and canalicular transporters as well as formation of functional 
bile networks (33, 34). Discovered by Dunn and colleagues, SCH maintain mRNA 
expression, as well as cell functions, such as the secretion of albumin, transferrin, 
fibrinogen, bile acids, and urea for 6 weeks (35, 36), and CYP450 isozymes for 2 
weeks (37). SCH have proven to be a useful tool to study hepatobiliary drug dis-
position and mechanisms of drug-induced liver injury, for example, elucidating 
transport mechanisms responsible for the elimination of the antifungal agent, 
micafungin (38), and the mechanisms of bile acid-mediated, drug-induced liver 
injury (39).

Immortalized or transformed cell lines

Immortalized or transformed cell lines are dissociated cell cultures, which have 
been genetically modified or selected for an oncogenic phenotype. Typically, these 
cultures show rapid proliferation, resistance to de-differentiation, improved pas-
saging, and greater resilience to senescence, making these cells convenient to 
maintain, expand, and retain phenotypic consistency between experiments. These 
cell cultures have been successfully used to study hepatitis B virus (HBV) and 
hepatitis D virus (HDV) infections. Mechanisms of HBV viral entry were discov-
ered in HepRG cell lines (40), the expression/replication of HBV was discovered 
in HepG2 (41), and the complete HDV replication cell cycle was discovered in 
HepG2 and Huh7 cells (42, 43). The shortcomings of these cell lines include sig-
nificant changes in differentiation potential; altered genomic content (44); abnor-
mal proteome expression; and the loss of features such as cellular polarity (45), 
contact inhibition (46, 47), metabolic CYP450 potential (48, 49), the induction of 
inflammatory mediators (50), as well as paracellular transport (51).

Due to most immortalized human hepatic cell lines having reduced liver- 
specific functionality (52), different strategies have been used to counteract this 
issue, including co-culture systems with primary human hepatocytes and overex-
pressing liver-enriched transcription factors, CYP450 enzymes, or proliferation 
inhibitors to increase hepatic functions (52). Immortalized human hepatic cell 
lines have been successfully used to investigate the life cycle of hepatitis C and B 
viruses (53–56), and they act as cellular models of hepatocarcinogenesis (57) and 
steatosis (58). Furthermore, immortalized hepatic cell lines have also been found 
suitable as in vitro tools for drug screening and safety testing. Hc3716-hTERT, 
immortalized fetal hepatocytes, and telomerase-immortalized hepatic stellate cells 
NPC-hTERT have been used as models for predicting the side effects of telomere-
targeting drugs (59), and Fa2N4 cells have been used for screening pregnane X 
receptor-mediated CYP3A4 induction (52).

Organotypic cultures

A major limitation of dissociated cell cultures is their high degree of homogeneity 
as they fail to represent liver tissue heterogeneity. While hepatocytes comprise the 
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majority of cells within the liver, liver function is dependent on a number of dif-
ferent cell types. 2D organotypic culture uses multiple different cell types to reca-
pitulate in vivo-like cell heterogeneity. Co-cultures of hepatocytes and macrophages 
have been successfully used to model their intercellular cross-talk, their roles in 
the regulation of liver regeneration, hepatocyte function, and the acute-phase 
response to septic liver injury (60). Long-term co-cultures of hepatocytes and 
LSECs, either on top of or sandwiched between a collagen gel, retained the LSEC 
phenotype and enhanced hepatocyte functions, such as increased CYP450 activity 
(61). In contrast, co-cultures of primary hepatocytes and endothelial cells, main-
tained under high oxygen conditions, preserved cell morphology, high CYP450 
levels, and native gene expression (62). A recent example by Ware and colleagues 
was a triculture of primary human hepatocytes with 3T3-J2 fibroblasts and LSECs 
overlayed with Matrigel®, which was shown to display a stable phenotype with 
increased albumin and urea secretion for 3 weeks (63).

Shortcomings of conventional 2D liver cell cultures

While these models have many benefits, a significant issue with 2D liver models 
is their lack of hepatic sinusoid heterogeneity, in vivo-like cell density, oxygen-
induced zonation, and the liver circulatory system. The clinical application of 
2D cell cultures is limited due to significant issues of cell contamination, non-
reflective cell differentiation, genetic drift, variable drug responsiveness, and a 
limited capacity to predict toxicity, creating a degree of uncertainty when using 
2D culture as a model for potential treatments, with a possible exception of 
patient-derived tumor cell lines for precision medicine (64).

3D IN VITRO LIVER MODELS

The shortcomings of 2D cell culture models have driven the development of 
3Dcell culture techniques. The advantages of 3D models include replicating the 
complex attributes of the liver beyond liver-specific metabolism, such as increased 
cell density, organization, and cell–cell signaling, O2 zonation, as well as the anat-
omy of the liver lobule and the circulatory system (Figure 2). Some of these mod-
els are limited by their low applicability for high-throughput screening as well as 
their laborious preparation, lack of reliable protocols, and short-term survival of 
these models in culture. However, 3D models have proven useful in developmen-
tal and toxicological studies and represent an exciting opportunity for more func-
tionally relevant clinical modeling.

Whole organ explants

Whole mouse liver organ explants have been used to study the effects of oxidation 
on the progression of hepatocarcinoma. In 2016, Torricelli and colleagues reported 
inoculating the murine hepatocarcinoma cell line Hepa 1/A1s into the livers of 
live mice, which proliferated in vivo for 20 days before the livers were removed 
and used as a whole organ explant model to study the effects of the antioxidant 
Citozym on tumor size in culture over a 4-week period (65).
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Precision-cut tissue slices

Liver ‘precision-cut tissue slices’ (PCTS) have mostly been generated using rat liv-
ers, but the technique has also been used for other species including humans (66). 
Slicing allows sufficient oxygen and nutrient supply to the inner cell layers, and 
hepatocytes retain their membrane and intracellular polarization (67). In a study 
by Vickers and colleagues, rat liver slices have been found to be fully capable of 
metabolizing compounds and maintaining fibrogenic pathways, such as activa-
tion of stellate cells, the proliferation of myofibroblast-like cells, and an increased 
collagen deposition for4 days under appropriate conditions (68). As with 2D cul-
tures, CYP450 expression decreases during prolonged culturing, but this has been 
shown to slow down when the medium is supplemented with insulin, dexameth-
asone, and fetal calf serum (69, 66).

Tumor tissue explants

A ‘tumor tissue explant’ is a 3D model of cancer, where an excised human tumor 
is embedded in collagen and tissue culture medium (70). Mainly used as an in 
vitro model of drug efficacy, this method has been demonstrated by Vaira and 

Figure 2 Different levels of structural complexity in the liver and their attributes represented in 
in vitro models. The different structures of the liver and their corresponding liver models on 
a gradient, based on their tissue complexity. Structures of the liver are then linked by 
attributes represented in the in vitro models discussed in this chapter.
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colleagues to preserve pathway activation, pharmacological inhibition, internal 
3D architecture, cell viability, and global gene expression profiles up to 5 days ex 
vivo (71). Unfortunately, this model is relatively unreproducible due to tissue 
heterogeneity, applicability of techniques such as imaging and flow cytometry is 
limited, and the culture is only viable for a short period of time, making it imprac-
tical for any form of high-throughput, long-term, or clinical investigations (72).

Multicellular tumor spheroid

The best-characterized 3D organotypic models of cancer are “multicellular tumor 
spheroids,” which are constructed from homogeneous tumor cells or co-cultures 
on nonadherent surfaces, where the cell suspension undergoes aggregation and 
compaction (73, 72). Spheroids re-establish morphological, functional, and phys-
iological cellular transport properties of their corresponding tissue and resemble 
the avascular tumor nodules/micrometastases or intervascular regions of large 
solid tumors (74). These have been used to gain insights into therapeutic chal-
lenges associated with drug resistance, metabolic and proliferation gradients, and 
the importance of cell–cell/cell–matrix interactions (74). Liver multicellular tumor 
spheroids have been used for understanding microenvironmental chemoresis-
tance of HCC associated with the crosstalk between HCC cells, hepatic stellate 
cells and other stromal cells (75, 76). For instance, liver cancer spheroids of Huh7 
cells co-cultured with human umbilical vein endothelial cells promoted HCC 
gene expression and oncogenic properties, such as cell proliferation, increased 
expression of cancer stem cell markers, and extracellular cytokine-mediated sig-
naling (77). Furthermore, this multicellular tumor spheroid model tolerated 
higher anti-cancer drug concentrations than the monolayer control, which may be 
due to the hypoxic conditions within the spheroid, activating extracellular signal-
regulated kinases (ERK), critical in tumor cell proliferation (77).

Organ-on-a-chip

An “organ-on-a-chip” utilizes the microfluidic technology to replicate the in vivo 
microenvironment and homeostasis of living human organs (78). Often consisting 
of transparent 3D polymeric microchannels lined by human tissue cultures, these 
devices are designed to mimic the 3D microarchitecture, organ-specific mechanical/ 
biochemical microenvironment, and the functional tissue–tissue interfaces in 
organs. Many investigators use micro-channels of matrix-coated porous mem-
branes with a layer of endothelial cells, populated by the desired co-culture, con-
nected by wells containing the preferred perfusion medium (78). These devices 
have also been designed with compartmentalized channels, allowing for indepen-
dent fluidic/aerosol access to individual tissue types, enabling selective treatment 
conditions and analysis (73). “Liver-on-a-chip” systems have been shown to pre-
dict clearances, toxicity, and the mechanism of action of certain drugs (79).

Commercially available liver-on-a-chip microfluidic systems such as the 3D 
perfused cell culture platform from Zyoxel and the Microliver chip from HμRel® 
corporation have been used for toxicity testing, but none of these systems have 
been fully validated. Most current models use primary human hepatocytes to 
populate the system, and a few include a co-culture with non-parenchymal cells, 
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which has improved their capacity to predict liver toxicity (80). For example, the 
anticancer prodrug Flutamide was tested for hepatotoxicity using human HepG2/
C3a cells in a microfluidic biochip and led to metabolic results consistent with 
reports in the literature. The authors demonstrated perturbation of the tricarbox-
ylic acid cycle and impaired urea cycle with reduced uptake of essential amino 
acids (81). In 2016, Bhise and colleagues have also had success in drug toxicity 
analysis with a liver-on-a-chip platform using human HepG2/C3a spheroids 
encased in hydrogel within a bioreactor for long-term culturing (82). Furthermore, 
biochips using primary hepatocytes have been used to measure the pharmacoki-
netics of several drugs, with results that resemble data in relevant clinical 
trials (83). The use of human-induced pluripotent stem cells (hiPSCs) to generate 
hepatocyte-like cells has been assessed for populating liver-on-a-chip systems. 
However, differentiated cells were found to have reduced functionality and imma-
ture gene/protein expression (84). Focused efforts at recapitulating lobule  zonation 
using liver-on-a-chip systems have had mixed success (85, 86). A controlled oxy-
gen gradient has been maintained in primary rat hepatocytes, which induced in 
vivo-like heterogeneous CYP450 localization and toxicity. This is significant 
because most studies only model one lobule zone (usually the perivenous zone), 
and hence, the expression of intermediate metabolites may be exaggerated, while 
detoxification may be underestimated (79).

Organoids

An “organoid cell culture” is defined as a collection of several cell types that 
develop from stem cells or organ progenitors, display organ-specific functions, 
mimic its structural organization, and self-organize through cell sorting and spa-
tially restricted lineage commitment, similar to organogenesis in vivo (87). 
Organoids are usually formed by exploiting the expansion potential of three cell 
types: pluripotent embryonic stem (ES) cells, induced pluripotent stem cells 
(iPSC), or organ-specific adult stem cells (aSC), forming new primary tissue buds, 
made of self-organizing daughter cells that are induced to differentiate in culture. 
These daughter cells display the capacity to self-organize into structures that 
reflect crucial aspects of the tissue for which they are fated (88). What distin-
guishes 3D liver organoid cell cultures from other in vitro models is that they 
bridge the gap between the microenvironmental integrity of organ explants and 
PCTS, yet have the high-throughput accessibility of immortal cell lines.

Liver organoids have demonstrated advantages over conventional in vitro 
models such as long-term genetic stability, in vivo-like organization, and main-
taining the necessary cellular crosstalk and behavioral characteristics of their pri-
mary corresponding cells (89). For example, adult stem cells from alpha-1 
antitrypsin (A1AT)-deficient patients cultured into liver organoids mimic the in 
vivo situation with A1AT protein aggregates and signs of endoplasmic reticulum 
stress (89). Liver organoids were first created by Huch and colleagues by exploit-
ing the expansion potential of LGR5+ progenitor/stem cells in damaged adult 
mouse liver tissue, by Wnt-driven regeneration. They then induced hepatocyte 
maturation by inhibiting Notch and TGF-β signaling, which led to the expression 
of genes involved in cholesterol and lipid metabolism, as well as from the CYP450 
superfamily. Immunofluorescent analysis revealed the expression of hepatocyte 
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nuclear factor 4α and albumin, hepatocyte binucleation, as well as patches of the 
progenitor cell and ductal marker cytokeratin 19. Ninety percent of these cells 
were also competent for low-density lipoprotein uptake and accumulated glyco-
gen (90).

In addition, Huch and colleagues established the first organoid culture sys-
tem for human liver from primary bile duct stem cells (89). These organoids 
displayed high stability, both chromosomally and structurally, with low rates of 
genetic alterations over a 3-month culture. Using the established methods 
developed for mouse liver organoids, they induced hepatocyte differentiation in 
the human liver organoids. As a consequence, the cultures began to display 
hepatocyte gene expression, albumin secretion, CYP450 metabolism, bile acid 
production, ammonia elimination, low-density lipoprotein uptake, and glyco-
gen storage (89). Further, organoids were readily engrafted in vivo upon trans-
plantation in mice (89).

It has been proposed that liver organoids may be a useful model for studying 
the transition of NAFLD to non-alcoholic steatohepatitis if these organoids were 
co-cultured with hepatic stellate cells, Kupffer cells, and other inflammatory cells 
(91). Retroviral transduction and liposomal transfection have been successfully 
used to genetically manipulate liver organoids with green florescent protein-
expressing vectors (92). Another exciting avenue to explore is CRISPR gene edit-
ing, with success already achieved using intestinal organoids of cystic fibrosis 
patients, where the cystic fibrosis transmembrane conductance regulator (CFTR) 
locus was corrected in vitro by homologous recombination (93).

Although 3D liver organoid cell cultures are becoming a research focus, chal-
lenges for the technology include the recapitulation of the in vivo ECM. It has 
been suggested that the use of decellularized liver ECM populated with liver 
organoids may improve hepatocyte functions (89), which has had success in pro-
moting survival and maturation compared to collagen type I (94). Limitations of 
liver organoids include the lack of a native microenvironment, thus inhibiting the 
study of the interactions between stem cells and their niches, a lack of all neces-
sary in vivo growth factors or signaling gradients, and an inability to accurately 
model immune responses. A possible solution to this is organotypical co- culturing 
and the application of microfluidic technologies. Further heterogeneity between 
organoid cultures can cause inconsistency in reproducing phenotypic traits such 
as size, shape, cellular composition, and 3D architecture (95, 96).

In drug development, an in vitro organoid system comprised of human cells 
which are complex enough to demonstrate organotypic composition, morphol-
ogy, and functionality (Table 1) would be ideal in closing the gap in phenotypic 
drug discovery (26). Increasing the chain of translatability for target-agnostic 
investigations remains a significant challenge (3), and human organoids may 
build a rational and sustainable discovery pipeline, reducing false-positives and 
cost. The reason for this is that organoids may present a more phenotypical dis-
ease-associated functional response to treatment than 2D cell lines as well as a 
more accurate disease-free associated phenotype. Phenotypic drug discovery with 
generic readouts like viability or apoptosis in cancer cell lines often provides little 
insight into disease pathways or mechanisms of action, while in vitro 3D organoid 
models exhibit the potential to become highly predictive cell-based tools for pre-
clinical drug toxicity assessments (97).
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To date, there have only been a few successful clinical uses of in vitro organoid 
models. One example was a robust functional drug assay for cystic fibrosis, devel-
oped using human intestinal organoids, which demonstrated the clinical potential 
organoids hold for precision medicine (98). Using automated fluorescent image 
analysis, the function of the CFTR (which is defective in cystic fibrosis) can be 
assessed, allowing the authors to efficiently test drug responses of patients and 
treat rare forms of this disease (99). This assay has advantages over established in 
vitro models, such as rectal biopsies and primary airway tissue culture models 
because organoids can be passed into large screening arrays for high-throughput 
precision medicine (98).

Tumor organoids

Despite the precision medicine approach, only a minority of patients with cancer 
derive clear benefit from matching genetic targets with treatment. Currently, 
 precision oncology based on emerging biomarkers remains an investigational 
strategy, and the present approach of matching single agents to patients is still 
suboptimal (17).

To address this issue, Pauli and colleagues piloted a study that combined 
whole-exome sequencing (WES) of patient metastatic and primary tumors with 
tumor organoid drug sensitivity assays, facilitating the integration of genomic data 
with drug screening in an iterative platform to identify effective therapeutic regi-
mens for individual patients (100). Sequencing of 769 specimens identified 
somatic cancer gene alterations that were actionable by FDA-approved drugs in 
three specimens (0.4% of the total), but found somatic alterations with potential 
clinically actionable by off-label use in 71 of the remaining specimens (9.6% of 
the total). Fifty-six organoid tumor lines and 19 patient-derived organoid xeno-
grafts were successfully established and characterized using cytology and histol-
ogy, leading to patient-derived tumor organoids from four candidates being 
selected and subjected to 2D high-throughput drug screening. The tumors 
screened were from uterine carcinoma, endometrial carcinoma, and two lines of 
stage IV colorectal cancer. Single and combination compounds selected by this 
process were then validated in 3D cell culture. Drug combinations were further 
validated in patient-derived xenografts for two patients. In both cases, the drugs 
selected by the screening were found to be more effective at reducing tumor 
growth than the patient’s current regimen. These results demonstrate that the 
optimal drug combinations can be identified using sequential drug-sensitivity 
screens followed by validation in personalized patient-derived tumor organoid 
xenograft models in a clinically relevant timeframe of 7 and 12 weeks (100). The 
further utility of tumor organoids to be passaged for large data sets while retaining 
individual phenotypic characteristics cannot be under-appreciated, as the power 
to rationally delineate the optimal therapy for every individual patient removes 
ambiguity and could exponentially speed up the rate of patient recovery. Pauli and 
colleagues demonstrated that 3D patient-derived tumor organoids can be a pow-
erful tool for individual drug sensitivity assays, the results of which can be verified 
in xenograft models (100). However, these findings still need to be proven in 
clinical practice and shown to benefit patient outcomes.
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In late 2017, the clinical potential of tumor organoids derived from human 
primary liver cancer was demonstrated by Broutier and colleagues (101). Tumor 
organoids from HCC, cholangiocarcinoma (CC), and combined hepatocellular-
cholangiocarcinoma (CHC) retained features from their tissue of origin, such as 
the vast majority of cancer-related genetic variants, gene expression profiles, and 
tissue histologies. Immunohistochemistry and immunofluorescence showed that 
even after long-term expansion in culture, disease-specific protein expression was 
conserved, including the HCC markers HepPar1 and alpha-fetoprotein in HCC/
CHC, and the ductal/CC marker epithelial cell adhesion molecule (EpCAM) in 
CC/CHC. Once established, the liver tumor organoid cultures were used to 
develop drug assays to identify patient-specific drug sensitivity. This was achieved 
by using a simple cell viability assay and observing the rate of organoid viability 
in the presence of range treatments with drugs such as sorafenib, gemcitabine, 
and SCH772984. Of these drugs, the sensitivity of the ERK inhibitor SCH772984 
was then able to be validated in a patient-derived xenograft model transplanted 
with a CC tumor organoid (101).

Another precision medicine study by Nuciforo and colleagues, using human 
liver tumor organoids, found that HCC tumor-derived organoids maintained the 
growth pattern and differentiation grade of the originating primary tumor. In 
addition, alpha-fetoprotein, glypican 3, glutamine synthetase, and heat shock 
protein 70 protein expressions were preserved. Whole exome sequencing deter-
mined that somatic and non-synonymous somatic mutations in the HCC biopsies 
were observed at a rate of 88 and 90%, respectively, in the corresponding HCC 
organoids at early passages. The tumor organoid cultures also displayed variable 
sensitivity to sorafenib exposure demonstrating that organoids derived from 
 biopsies can be used to test tumor-specific sensitivities to growth-inhibitory sub-
stances. However, a direct comparison of in vitro sorafenib activity with the clini-
cal response was not feasible, because none of the patients for whom organoid 
cultures were generated were treated with sorafenib (102).

These studies demonstrated the added value tumor organoids may have in the 
pursuit of precision medicine in treating primary liver cancer. While precision 
medicine has focused mainly on matching genetic targets with treatments, tumor 
organoids may be used to validate these matches in in vitro models or discover 
potential treatment options in the patient, which can be further validated in vivo, 
using tumor organoid xenograft models.

FUTURE DIRECTIONS OF IN VITRO MODELS OF THE LIVER

Future in vitro models of the liver need to be standardized to satisfy the require-
ments of (i) high-throughput with ease of use during cell maintenance and (ii) rep-
lication of anatomical and metabolic zonation of the liver lobule. Future in vitro 
models of the liver will combine material advancements made in organ-on-a-chip 
biotechnologies, bioprinting, and the cell biology advancements in organoid 
research. This could be achievable using permeable microfluidic tubes lined with 
LSECs to simulate blood flow and bile excretion or within a modified liver-on-a-
chip system, populated by liver organoids and co-cultured with non- parenchymal 
cells, similar to the early intestinal organoid populated organ-on-a-chip devices 
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recently developed, which have recapitulated important structural features and 
functions of the native duodenum (103, 104). Zonal inter-hepatic heterogeneity of 
the model may be controlled by applying an oxygen gradient across the hepatic cell 
population. Other considerations include assembly on a matrix that accurately 
models composition of the in vivo ECM for increased in vivo-like cell–ECM inter-
actions. This would be similar to the bioprinted liver lobules created by Grix and 
colleagues, where populated HepaRG cells and human stellate cells had micro-
channel structures, which demonstrated flushing, higher levels of albumin, and 
CYP450 gene expression, while maintaining overall metabolism (105). The liver 
organoid-on-a-chip system by Wang and colleagues combined a perfusable organ-
on-a-chip system with hiPSC-derived liver organoids, which demonstrated 
improved cell viability and higher expression of mature hepatic genes and endo-
dermal genes (106).

CONCLUSION

In vitro models of liver disease represent an exciting opportunity to better under-
stand liver homeostasis, response to injury, and cancer development. Conventional 
methods that use2D primary human hepatocytes and immortalized cell lines or 
3D organ explant/PCTS have progressed to using 3D organ-on-a-chip and organ-
oid models with microfluidics and appropriate co-cultures, in which the complex 
cellular heterogeneity of the originating organ is recapitulated ex vivo. Although 
well-characterized immortalized cell lines will remain relevant for studying highly 
conserved cellular processes and interactions, they cannot be regarded as com-
pletely accurate models of liver biology in vivo. It is also possible that in the 
future, as methods become established and validated, in vitro models of the liver 
will increase the efficacy of pre-clinical drug development, leading to more thera-
pies to treat liver disease. Tumor-derived organoids may also play an essential role 
in fulfilling the promises of precision medicine, as a method of validating prospec-
tive drugs for individual patients.
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Abstract: Hepatocellular carcinoma (HCC) represents a major and steadily 
increasing global health challenge as the most common primary liver malig-
nancy and leading cause of death in cirrhotic  patients. The only hope for cura-
tive treatment or significant increase in life expectancy is early  detection. Once 
patients have progressed towards end-stage HCC, effective treatment options 
are extremely limited on the background of a very high degree of heterogeneity 
in clinical presentation and  outcome. Experimental chronic liver injury and 
cancer have been used extensively to mimic the human  disease. In particular, 
mouse studies have advanced the field due to the ability to easily manipulate 
the mouse genome and transcriptome for mechanistic  evaluations. In addition, 
they offer the opportunity to screen new therapeutic strategies cost-effectively 
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and in quick high-throughput, large-scale  formats. The most commonly used 
mouse models in HCC research can be categorized as chemotoxic, diet-induced, 
and genetically engineered  models. It is important to note that no particular 
model mimics all features of a given HCC etiology or histological subtype, and 
each model poses advantages and disadvantages that need to be carefully 
 considered.

Keywords: cirrhosis; hepatocellular carcinoma; hydrodynamic tail vein injection; 
non-alcoholic fatty liver disease; non-alcoholic steatohepatitis.

INTRODUCTION

Liver cancer is the seventh most common cancer worldwide, and one of the 
deadliest, with a 5-year survival rate in the range of 5–30% (1). A recent assess-
ment by the Global Burden of Disease Cancer Collaboration revealed that 1 in 
38 men and 1 in 111 women will develop liver cancer at some point in their 
lives (2). In 2016, liver cancer contributed to approximately 10% of all cancer-
related deaths worldwide, ranking second in terms of the absolute number of 
years of life lost, only behind lung cancer (2). High morbidity and mortality 
rates underscore the need to develop platforms to identify diagnostic tools for 
better and earlier detection and more effective targeted therapies, in order to 
halt disease progression and improve survival of  patients. Therefore, appropri-
ate preclinical models of liver cancer, in particular hepatocellular carcinoma 
(HCC)—the most common type of liver cancer, representing approximately 
70% of all primary liver malignancies (3, 4)—are critical research tools that 
enable breakthroughs in the biology of hepatocarcinogenesis and testing of 
novel  therapies. Current therapy options for HCC are limited to surgical and 
non-surgical ablative therapies or liver transplantation; systemic approaches, 
such as treatments with multikinase inhibitors, only prolong the life expectancy 
of patients by 2–3 months (5).

Human hepatocarcinogenesis typically occurs secondary to chronic liver 
 diseases. These include the iron overload disorder hemochromatosis, viral hep-
atitis, alcoholic fatty liver disease (AFLD), and non-alcoholic fatty liver disease 
(NAFLD), all of which can promote steatosis, the build-up of excess fat in liver 
cells, and steatohepatitis, when the condition is accompanied by inflammatory 
and fibrogenic  components. Steatohepatitis causes cellular damage and oxida-
tive stress and instigates the release of pro-inflammatory and pro-fibrogenic 
signaling molecules, which (i) recruit immune cells to the site of injury, 
(ii)  induce hepatic stellate cell-mediated collagen deposition in the hepatic 
wound healing response, and (iii) activate liver progenitor cells, as part of a so-
called Ductular reaction, to replace lost tissue (6, 7). If injury is halted, matrix 
is resorbed and normal liver architecture is  restored. However, chronic patho-
logical insults can lead to excessive fibrosis, cirrhosis, and ultimately liver 
 cancer (Figure 1) (7).

Micehave become the pillar for biomolecular discovery in human disease due 
to numerous advantages over other model organisms (8, 9). An ever-growing list 
of mouse models has been developed to study different aspects of chronic liver 
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disease and progression to  HCC. However, appropriate recapitulation of human 
pathological features has been  challenging. Furthermore, when analyzed in detail, 
distinct models have been shown to induce remarkably different pathological 
 patterns (10). This chapter describes some commonly used as well as the most 
recently developed mouse models of  HCC. Table 1 indicates the timeframe for 
HCC development and highlights some of the most prominent features and 
 characteristics of each model discussed in this chapter (Table 1).

A variety of strategies can be used to generate HCC in  mice. These involve 
administration of toxic agents, genetic modifications such as expression of onco-
genes or disruption of tumor suppressor genes, cancer-promoting diets, and 
xenograft implantation  models. Often, multiple strategies are combined in order 
to achieve clinically relevant disease progression to mimic human  HCC. Thus, it 
is important to choose the most appropriate model and time point to best answer 
an underlying research  question. Importantly, it may be necessary to validate 
novel therapeutic targets across multiple models before they can be considered for 
translation into clinical  trials.

CHEMOTOXIC MODELS

Several hepatotoxins have been used to induce HCC in  mice. These chemicals 
either cause DNA damage directly and, therefore, produce cancer-promoting 
mutations, or act indirectly by facilitating clonal expansion of transformed 
cells  (11). Timing and reproducibility of tumor development can vary signifi-
cantly between different compounds and, interestingly, between studies from 

Figure 1 Progressive stages of liver disease to hepatocellular carcinoma development. Chronic 
liver diseases that predispose to hepatocellular carcinoma (HCC) are generally characterized 
by steatosis and hepatocellular damage or death, followed by inflammation and fibrosis. 
These are initial and potentially reversible wound healing when the disease stimulus is 
withdrawn. However, if the injury is persistent, liver disease may progress to end-stage 
complications such as cirrhosis and HCC.

Healthy Steatosis
Inflammation

Fibrosis Cirrhosis HCC

 CHRONIC LIVER DISEASE
(such as viral hepatitis, alcoholic and

non-alcoholic fatty liver disease, haemochromatosis)  

Stages of liver damage and progression to HCC

Potentially reversible if injury is halted or with treatment
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TABLE 1 Commonly used mouse models of hepatocellular 
carcinoma classified as chemotoxic, diet-based, 
and genetic

Model
HCC development 
(time) Features References

Chemotoxic

DEN Males >80%, 
females 10–30% 
incidence at 
9  months. 

Neutrophil infiltration, bile duct 
proliferation, centrilobular hemorrhagic 
necrosis, bridging  necrosis. No fibrosis 
or  cirrhosis.

(15–18, 21–27)

CCl4 1–2 years for most 
mice  strains. As 
early as 15 weeks 
in A/J mice

Hepatocyte necrosis, steatosis, Kupffer cell 
activation, immune cell  infiltration. 
Fibrosis precedes  HCC.

(42–52)

TAA 6–12 months Mild steatosis, centrilobular necrosis, 
severe  inflammation. Steady progressive 
worsening of inflammatory, fibrogenic 
and progenitor cell  responses. Strong 
centrally-driven fibrotic component, 
progressing to cirrhosis prior to  HCC.

(10, 58–61, 
63–68, 
71–74)

DEN+CCl4 100% incidence at 
5 months

Similar to CCl4 alone but with shortened 
HCC latency and increased presence of 
progenitor  cells.

(54, 55)

DEN+TAA+HFD 100% incidence at 
6 months

Reliable progression to HCC with short 
 latency. Includes steatosis, inflammatory 
and fibrogenic  features.

(75)

Diet

CDE 75% incidence at 
14 months

Periportal injury, severe steatosis at early 
 stages. Mild to moderate fibrosis, strong 
liver progenitor cell  component. 

(10, 92, 93)

ALIOS 60% incidence at 
1 year

Severe steatosis, hepatic necrosis and 
 inflammation. Ballooning hepatocytes 
and Mallory hyaline at 16  weeks. Mild 
periportal to bridging fibrosis, later liver 
progenitor cell  involvement.

(97, 98)

DIAMOND 89% incidence at 
1 year (can be 
accelerated to 
6 months by 
combination 
with CCl4).

Pronounced hepatocyte ballooning and 
progressive fibrosis at 6  months. 
Strong histologic and transcriptomic 
similarities with human NASH 
and  HCC.

(99–101)

Table continued on following page
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TABLE 1 Commonly used mouse models of hepatocellular 
carcinoma classified as chemotoxic, diet-based, 
and genetic (Continued)

Model
HCC development 
(time) Features References

MUP-uPA+HFD 78.6% incidence at 
32–40 weeks

Several hallmarks of human NASH 
(activation of hepatic stellate 
cells, bridging fibrosis, immune 
cell infiltration, and ballooning 
hepatocytes), Highlights the role of ER 
stress in HCC  development.

(102, 103)

Genetic

c-Myc Incidence of 40% at 
45 weeks, 60% 
at 55 weeks, and 
80% at 65 weeks

Mild to severe hepatic dysplasia at 2–3 
months of  age. First carcinogenic 
lesions at about 1 year of  age. Can 
be accelerated by co-expression of 
TGF-a and prevented by  HGF. HCC 
development drastically accelerated by 
co-treatment with CCl4.

(109–113)

E2F1 Incidence of 33% at 
1 year

Hepatic dysplasia at 2 months and 
adenomas at 6  months. HCC 
development accelerated by c-Myc 
co-expression.

(115, 116)

Active β-catenin 
+H-rasG12V

100% incidence 
within 2 months 
of genetic 
manipulation

Active b-catenin alone does not progress 
to  HCC. Combination with H-rasG12V 
induces rapid HCC  development. 
Dysplastic hepatocytes surrounded by 
immune infiltration in the first 4 weeks 
and multifocal nodules by 5  weeks.

(122, 123)

Apc KO 67% incidence at 
8–9 months

Dose of adenoviral injections is key 
(0.5 × 109  pfu). High doses increase 
mortality  risk. Trabecular and well-
differentiated  HCCs.

(124, 125)

Trp53 KO 14–20 months Majority of tumors display bipotential 
cell phenotypes (co-expression of 
hepatocyte and biliary  markers).

(127, 129)

PTEN KO Incidence of 47% 
at 44 weeks and 
66% at 74–78 
weeks

Hepatomegaly and steatosis at 10 
 weeks. Features of NASH (hepatic 
inflammation and fibrosis) at 40  weeks.

(132, 133)

Active β-catenin, β-catenin gene Ctnnb1 lacking exon 3; ALIOS, American lifestyle-induced obesity syndrome; Apc, 
adenomatous polyposis coli; CCl4, carbon tetrachloride; CDE, choline-deficient and ethionine-supplemented diet; c-Myc, 
Myc proto-oncogene; DEN, diethylnitrosamine; DIAMOND, diet-induced animal model of non-alcoholic fatty liver disease; 
E2F1, E2F transcription factor 1; HFD, high-fat-diet; H-rasG12V, substitution of glycine with valine at position 12 of human 
RAS; MUP-uPA, major urinary protein-urokinase-type plasminogen activator transgenic mice; PTEN KO, liver-specific 
knockout of phosphatase and tensin homolog; TAA, thioacetamide; Trp53 KO, liver-specific knockout of the mouse p53 
 ortholog.
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different research  groups. The latter possibly reflects differences in the murine gut 
microbiota, which are known to play key roles in tumor growth, as recently dem-
onstrated in pancreatic and colon cancer as well as melanoma (12). Hepatotoxins 
that are generally regarded as appropriate tumor inducers mostly recapitulate the 
multistep progression stages of human HCC involving injury, steatosis, inflamma-
tion, fibrosis, and  carcinogenesis. However, the degree and level of interplay of 
these histological changes often  varies. The most commonly used hepatotoxins to 
study HCC in mice are discussed  below.

Diethylnitrosamine (DEN)

DEN, also known as N-nitrosodiethylamine, is probably the most commonly used 
chemical to induce liver cancer in mice and is either administered orally or 
through peritoneal  injection. DEN is bioactivated in centrilobular hepatocytes in 
a cytochrome P450-dependent manner and produces metabolic sub-products 
that have DNA alkylating properties, ultimately leading to mutagenesis (13). 
Tumor incidence is reduced in CYP2 E1-deficient compared to wild-type mice, 
suggesting that it may be one of the key CYP enzymes that catalyzes DEN 
 bioactivation (13). DEN administration also induces reactive oxygen species 
(ROS)  formation and oxidative stress, which constitutes an additional mechanism 
by which it promotes hepatocarcinogenesis (14).

A single intraperitoneal dose of 5 mg/kg of DEN to weaning, 15-days-old male 
mice is sufficient to induce hepatocarcinogenesis in approximately 80% of all 
animals 9 months after induction (15). However, long-term administration or 
higher doses of DEN can reach an incidence of 100% in shorter timeframes 
(15–18). While DEN reliably induces HCC, dose, timing of administration, 
 gender, age, and strain impact the severity and timing of tumor appearance (19). 
High cellular proliferation is known to enhance mutagenesis by chemical 
 carcinogens both in vitro and in vivo (20). Thus, in most cases, juvenile mice are 
used, which display actively proliferating hepatocytes at this stage of their devel-
opment. DEN treatment results in the expansion of cells with oncogenic muta-
tions, leading to dysplastic lesions that eventually give rise to carcinomas (19).

Vesselinovitch and Mihailovich conducted an extensive dose–time response 
kinetics study of DEN-induced hepatic carcinogenesis, which included evalua-
tion of early alterations such as basophilic foci and nodules, as well as late trans-
formation to adenomas and hepatocellular carcinoma lesions (21). Briefly, HCC 
developed more reliably when DEN was administrated to younger mice (15-days 
old) in a dose-dependent manner, ranging from as little as 0.625 up to 5 mg/kg 
of body weight, whereas treatment of more mature mice (42-days old) with doses 
up to 50 mg/kg failed to induce predictable carcinogenesis within the same obser-
vational period of up to 110 weeks (21).

Another factor influencing the carcinogenicity of DEN is the  gender. The 
incidence for DEN-induced liver cancer can reach 100% for male mice, but is 
only approximately 10–30% in females, indicating a gender-specific differential 
response (22–27). Nakatani et  al. studied the influence of hormonal factors 
and demonstrated that ovariectomy or testosterone supplementation increased 
the occurrence of liver tumors in females treated with  DEN. Furthermore, 
male  castration paralleled by estrogen administration resulted in a reduced 
tumor incidence of 26%, similar to the prevalence observed in females (28). 
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These findings in experimental liver carcinogenesis are consistent with the 
observation that men are three to five times more likely to develop HCC than 
women (29). The precise molecular mechanisms underlying gender imbalance 
are not completely understood, but have recently been demonstrated to involve 
estrogen-dependent  interleukin (IL)-6 inhibition in females, and direct down-
stream effects in nuclear factor kappa B (NF-κB) and signal transducer and 
activator of transcription 3 (STAT3) signaling, two key transcription factors in 
HCC development (24, 30).

The sequence of hepatic alterations in DEN-treated mice is highly similar to 
human chronic liver disease to HCC  progression. During the course of their life, 
mice subjected to DEN develop histological alterations that include neutrophil 
infiltration, bile duct proliferation, centrilobular hemorrhagic necrosis, and bridg-
ing necrosis, all of which are observed in human HCC (31). However, the most 
common histopathological features of human HCC, fibrosis, and cirrhosis (32) 
are not observed with DEN administration alone (33). Indeed, 80–85% of all 
cases of HCC occur in cirrhotic patients, and only about 10% of HCC cases are 
reported in the absence of any chronic liver disease (34). Thus, models that 
include fibrogenesis are most relevant to a better understanding of the pathogen-
esis of human  disease. The combination of DEN with fibrotic compounds such as 
carbon tetrachloride (CCl4) and thioacetamide (TAA) has been demonstrated to 
better model this particular feature of HCC (35).

Carbon tetrachloride (CCl4)

CCl4 was widely used as a fumigant, cleaning product, and in fire extinguishers 
until it was phased out due to safety concerns and banned worldwide in 1996, 
under the “Montreal Protocol on Substances that Deplete the Ozone  Layer.” CCl4 
is a hepatotoxin known to induce liver damage, infiltration of inflammatory cells, 
and fibrosis (36). Similar to DEN, hepatotoxicity involves metabolism through 
cytochrome P450 and generation of toxic metabolic sub-products in hepatocytes 
(37, 38). One of them, trichloromethyl radical (CCl3*), is a highly reactive inter-
mediary that can damage nucleic acids, proteins, and lipids, leading to impair-
ments in diverse cellular processes (39). The main mechanism for CCl4-induced 
hepatic toxicity involves exacerbated lipid peroxidation, which leads to plasma 
membrane damage and secondary accumulation of lipoproteins and lipid droplets 
in hepatocytes (40, 41). Thus, one advantage of the CCl4 model is that it includes 
hepatic steatosis in its  pathogenesis. Additionally, CCl4 promotes activation of 
Kupffer cells, and this has been demonstrated to be necessary for its fibrogenic 
effect (42). Pro-inflammatory signaling mediated by Kupffer cells attracts further 
immune cell recruitment and infiltration, which contributes to the tissue damage 
elicited by CCl4 administration (43). A single dose of CCl4 leads to centrilobular 
liver necrosis, followed by tissue repair and regeneration (44). Thus, in contrast to 
DEN, CCl4 must be administrated chronically and/or repeatedly in order to lead 
to cycles of injury, inflammation, fibrosis, and cirrhosis, and it eventually gives 
rise to HCC (11).

CCl4 is most often provided to mice as a 2–4 mL/kg 50% solution in mineral 
or vegetal oil, either by gavage or intraperitoneally (45–47). However, a signifi-
cant variation in dosage can be found in the  literature. Inhalation exposure has 
also been utilized, although this route is much less common (48). The frequency 
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of doses also varies in different protocols, but generally consists of weekly, 
biweekly, or three times a week  administrations. While the pathology induced 
by CCl4 has a prominent fibrogenic component (49, 50) and A/J male mice were 
shown to present 100% incidence of HCC following a protocol of only 17-weeks 
of CCl4 administration (49), the evolution to HCC generally only occurs after 
long-term exposures of 1–2 years for most mouse strains (11, 51, 52). Therefore, 
CCl4 is often combined with other tumor-promoting agents such as alcohol, 
DEN, and others, which allow for a more timely induction of hepatic carcino-
genesis, while maintaining the inflammatory and fibrogenic components that are 
akin to human HCC (53). For example, a single dose of DEN at 2 weeks of age, 
followed by biweekly administrations of CCl4 led to a two fold increase in carci-
nogenesis at 5 months of age (54, 55). Interestingly, this was associated with 
significant increase in the expression of progenitor cell markers in the non- 
cancerous parenchyma, suggesting the role of fibrosis in promoting cellular 
alterations that lead to  carcinogenesis. The presence of cells expressing progeni-
tor features has been associated with a more aggressive tumor phenotype and 
poorer outcomes in human studies (56, 57). However, the exact role of progeni-
tor cells in the development of HCC is largely unknown and is a subject of 
intense research in the field (7).

Thioacetamide (TAA)

TAA has mostly been used to induce fibrosis, cirrhosis, and liver cancer, including 
cholangiocarcinoma in rats, but studies increasingly emerge on hepatic TAA 
 toxicity in mice (10., 58–61). TAA is an organosulfur compound that undergoes a 
 two-step bioactivation through the flavin-adenine dinucleotide-containing mono-
oxygenases or cytochrome P450 via TAA sulfoxide (TASO or sulfine) to thioacet-
amide sulfdioxide (TASO2 or  sulfene). TASO2 is a highly reactive metabolite, 
which causes significant fat deposition, necrosis, and inflammatory cell aggregates 
in centrilobular areas, where TAA is metabolized (10, 62). The mechanisms of 
toxicity are believed to be secondary to its oxidant properties, including lipid per-
oxidation and production of ROS, dampening antioxidant defenses and exacerbat-
ing hepatic oxidative stress (62). In mice, it is usually administered by the addition 
of drinking water at 300 to 600 mg/L, allowing for a simple model to induce 
 carcinogenesis without the need for regular injections (10, 60, 63). However, it can 
also be administered intraperitoneally two to five times a week (63–65).

A detailed 6-week time course analysis by Köhn-Gaone and colleagues 
 compared the molecular and cellular injury dynamics of TAA-induced chronic 
liver injury to feeding of a choline-deficient and ethionine-supplemented 
(CDE) diet in mice (10). While the CDE diet induced periportal injury, steato-
sis, and  fibrosis with a peak of all measured injury parameters in the first 
2 weeks,  followed by slow normalization of liver histology and function, TAA 
supplementation led to progressively worsening inflammatory, fibrogenic, and 
liver progenitor cell  responses. Various studies have reported portal, portal–
portal, or portal–central bridging in the TAA model (63, 66–68). However, the 
 comprehensive time course analysis in C57BL/6 mice revealed that fibrosis is 
centrally driven in TAA liver injury and progresses to cirrhosis within only 
6  weeks of treatment (10). Long-term treatment with TAA alone has been 
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demonstrated to induce HCC within 14–16 weeks in rats (69, 70). Murine 
studies are much rarer in the literature and describe HCC development after 
26 weeks to 12 months of TAA treatment (71–74). Figure 2 illustrates tumor 
histology and characteristics of TAA-induced HCC development compared to 
CDE-mediated HCC development in mice after 7 months of  treatment.

Often, TAA has been used in combination with other methods to induce hepa-
tocarcinogenesis in a shorter  timeframe. For instance, combination of a single dose 
of DEN at 14 days, accompanied by 300 mg/L of TAA in the drinking water, along 
with high-fat-diet (HFD) feeding from 4 weeks of age, elicited histological features 
of inflammation, steatosis, and fibrosis that were significantly exacerbated as early 
as 12 weeks of treatment, and 100% of animals progressed to liver tumors by 
24 weeks (75). Such combinatory strategies not only recapitulate different features 
of human HCC but may also significantly reduce the time for tumor development 
and have therefore become quite popular in liver cancer research (76).

DIET-INDUCED MODELS

Recent advances in antiviral therapies, which can result in permanent suppression 
of hepatitis B virus (HBV) and eradication of HCV, are significantly reducing the 
incidence of HCC from viral etiology (77). Furthermore, the second and most 
prevalent risk factor for HCC, alcoholic steatosis, is relatively stable over time 
(78). This can be attributed to observations pointing to steady or decreasing trend 
of alcohol consumption per capita in most countries over the past decades (79). 
Therefore, NAFLD and its advanced form, non-alcoholic steatohepatitis (NASH), 
are responsible for the current and future increases in chronic liver disease and 
HCC incidence worldwide (80). NAFLD is the hepatic manifestation of the meta-
bolic syndrome and is estimated to affect an astonishing 24% of the world popula-
tion (81). NAFLD is generally accompanied by obesity, insulin resistance, and 
 dyslipidemia. Thus, diet-induced models that manifest those metabolic altera-
tions are well suited to represent human NAFLD-driven  HCC. Noteworthy, only 
a small fraction of patients with NAFLD progresses to HCC (82). The network of 
factors that predict NAFLD progression to NASH and carcinogenesis are poorly 
understood, hence the importance of appropriate pre-clinical models to further 
our knowledge in this particular setting (83, 84).

Several diet-induced mouse models exist that induce HCC; however, not all 
models replicate all the associated metabolic dysfunctions that are characteristic 
of human  NAFLD. Feeding rodents a diet deficient in choline (CD), for instance, 
is known to induce hepatic steatosis and progression to HCC (85). This has first 
been observed in rats (86, 87) and confirmed in a number of mouse strains (88). 
Mechanistically, choline deficiency leads to defects in phospholipid synthesis, 
lipoprotein secretion, oxidative damage, endoplasmic reticulum (ER) stress, and 
cell death (85). Diets that combine choline with methionine deficiency (MCD) 
induce even more severe pathology, characterized by steatohepatitis within 1–2 
weeks and fibrosis by 8–10 weeks of feeding (89, 90). However, both CD and 
MCD are not accompanied by other physiological hallmarks of the metabolic 
syndrome, namely dyslipidemia, glucose intolerance, and insulin resistance 
(91). Furthermore, these diets promote severe body weight loss and morbidity, 
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Figure 2 Histology and cellular characterization of CDE- and TAA-induced tumors. (A) Gross 
liver morphology assessment of C57BL/6J mice treated with CDE or TAA for 7 months 
demonstrates the development of advanced tumors. Hematoxylin and eosin (H&E) stains 
reveal the presence of a great variety of neoplastic changes and nodules. TAA-induced 
tumors comprise large polygonal cells with abundant eosinophilic cytoplasm and atypical 
stripped nuclei as well as moderate basophilic cell infiltrates. Similar characteristics are 
identified in CDE-induced tumors, although with weaker eosinophilic cytoplasm and 
enriched small basophilic cells. An altered stromal network of collagen III-composing fibers 
demonstrates the characteristic thickening of hepatic cell plates and diffuse reticulin 
structures within tumors. Reticulin crowding at the interface of tumorous and non-tumorous 
tissue indicates invasive tumor growth into the surrounding tissue. (B) Immunohistochemical 
staining of both CDE- and TAA-induced tumors with the biliary and liver progenitor cell 
markers cytokeratin 19 (CK19) and CK7 and the hepatocellular carcinoma (HCC) marker 
carbamamoyl phosphate synthetase I (CPS1) identifies the tumors as HCC with biliary and 
progenitor proliferation almost exclusively in extra-tumoral tissue. (C) Fluorescent labeling 
of the cellular components of the injury and regeneration niche, which hosts panCK+ biliary 
and progenitor cells (green), alpha-smooth muscle actin (aSMA)+ hepatic stellate cells (red) 
and CD45+ inflammatory cells (white), illustrates the cells’ close spatial relationship and 
potential for cellular cross-talk in the tumor-surrounding tissue of CDE and TAA mice. NT, 
non-tumor; T, tumor.
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and thus, they are generally not suitable for long-term experiments leading up to 
 HCC. In order to significantly reduce the time to carcinogenesis, ethionine, a 
non-proteinogenic cytotoxic methionine analogue, can be added to the CD diet 
(CDE) and induce severe hepatic inflammation with a strong proliferation of 
liver progenitor cells and activation of fibrosis-driving hepatic stellate cells in as 
early as 2 weeks of feeding (92). Long-term CDE feeding of C57Bl/6 mice 
induced HCC in 75% of animals, whereby tumor development was significantly 
inhibited following treatment with the multi-tyrosine kinase inhibitor imatinib 
mesylate (93). Features of CDE-induced HCC after 7 months of treatment are 
demonstrated in Figure 2 in comparison with tumors provoked by TAA 
 administration.

The HFD model involves feeding animals ad libitum diets containing a total of 
45% to75% calories intake derived from fats (94). Several formulations exist in 
which the types and percentages of fats vary significantly (95). In this model, 
hepatic steatosis, characterized by increased liver triglyceride accumulation and 
fatty acid synthesis, is accompanied by other features of the metabolic syndrome 
such as obesity, glucose intolerance, and insulin resistance (96). It is a very reliable 
model to induce simple hepatic steatosis; however, in most mouse strains, no 
additional liver damage and inflammation, neither development to HCC, are 
observed (83).

To produce a model that more closely resembles the human disease, Tetri et  al. 
developed a formulation containing nutrients commonly found in fast foods and 
kept mice under conditions designed to encourage sedentary behavior, the so-
called American Lifestyle-Induced Obesity Syndrome (ALIOS) model (97). The 
formulation included trans-fats and high-fructose corn syrup, in addition to 
removal of cage racks to promote low energy  expenditure. After 16 weeks under 
this regime, mice developed severe hepatic steatosis, associated with necrosis and 
 inflammation. Histological features of human NASH such as ballooning hepato-
cytes and Mallory hyaline were also  described. Fibrogenesis was not detected 
histologically; however, procollagen mRNA expression was found to be upregu-
lated, suggesting that fibrosis might develop at time points later than 16 weeks 
(97). Consistent with this hypothesis, a separate study used 12-month exposure 
to the ALIOS protocol and revealed fibrosis with severity ranging from mild peri-
portal to bridging fibrosis (98). These observations were accompanied by sub-
stantial activation of the liver progenitor cell niche, which was evidenced through 
increased numbers of cells positive for pan-cytokeratin (panCK) and sex- 

determining region Y-box 9 (Sox9) throughout the  parenchyma. HCC was 
observed in 60% of all ALIOS mice at 12 months (98). These studies demonstrate 
that diet and lifestyle interventions are sufficient for the induction of NASH and 
hepatocarcinogenesis in  mice. Future studies are necessary to assess the level of 
similarities between the genetics and transcriptomics of carcinogenesis observed 
in ALIOS mice compared to human  HCC.

Another western diet model, comprised of high cholesterol, high saturated fat, 
and high fructose, has been shown to promote NASH, which was characterized by 
pronounced hepatocyte ballooning and progressive fibrosis after 6 months of 
feeding (99). No HCC was observed at 6 months, but it resulted in 89% incidence 
of spontaneous HCC after 12 months of feeding to a stable isogenic cross between 
C57BL/6J and S129 mice (100). Interestingly, this model, named Diet-Induced 
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Animal Model Of Non-alcoholic fatty liver Disease (DIAMOND), presented 
remarkable histologic and transcriptomic similarities with human NASH and 
 HCC. Tsuchida et  al. recently demonstrated that the same diet, combined with 
low weekly doses of CCl4, can develop rapid progression to stage 3 fibrosis and 
HCC within 12 and 24 weeks,  respectively. The pathology closely mimicked his-
tological, immunological, and transcriptomic features of human NASH, thus rep-
resenting a rapid induction model suitable to study hepatocarcinogenesis in a 
clinically relevant setting (101).

Most recently, another diet-induced model of NASH-driven HCC was estab-
lished through genetically induced predisposition to  HCC. Feeding of a HFD to 
major urinary protein (MUP)-urokinase-type plasminogen activator (uPA) trans-
genic mice, which overexpress uPA specifically in hepatocytes, induced liver dis-
ease that recapitulated several hallmarks of human NASH and reliable progression 
to HCC (102). In comparison with HFD-fed control wild-type animals, MUP-uPA 
mice displayed increased activation of hepatic stellate cells as well as upregulation 
of collagen and other fibrogenic  markers. Immune cell infiltration, bridging fibro-
sis, and ballooning hepatocytes were all present in MUP-uPA mice at 24 weeks 
after diet  initiation. Hepatocarcinogenesis was observed at 32–40 weeks of HFD 
feeding in about 78.6% of these  animals. The mechanism of disease progression 
involved excessive ER stress, induced by hepatocyte overexpression of uPA and 
exacerbated by HFD, as well as tumor necrosis factor (TNF)-dependent inflam-
mation (102). This model was later used to demonstrate the key role of caspase-2, 
downstream of TNF and ER stress, in mediating the activation of sterol regulatory 
element-binding proteins (SREBP), recognized to participate in NASH develop-
ment (103).

GENETICALLY ENGINEERED MODELS

Human HCC is known to have a very high level of inter- and intra-tumor genetic 
heterogeneity (104). Illustrating this concept, a study by Schulze and colleagues 
employed exome sequencing analysis and identified mutations in 161 distinct 
putative driver genes in a cohort of only 243 hepatic tumors (105). In addition, a 
recent study published by the Cancer Genome Atlas Research Network investi-
gated 383 HCC cases by whole-exome sequencing and DNA copy number analy-
ses and assessed 196 HCC samples for their DNA methylation, RNA, miRNA, and 
proteomic  status. The comprehensive data set, coupled with robust statistical 
power by the large investigated cohort, enabled the identification of various 
molecular signatures, which may be therapeutically targeted in different HCC 
subgroups (106). The individual roles of many of the identified genes and path-
ways in hepatocarcinogenesis have been, and continue to be, determined using 
mouse  genetics. Such models are excellent tools to investigate the discrete effects 
of candidate oncogenes or tumor suppressor genes in  HCC. The number of genet-
ically engineered mouse models of HCC is very large and continuously  expanding. 
Moreover, comprehensive reviews describing available models have been pub-
lished elsewhere (107). The scope of this chapter is to present a few of the most 
commonly used and well-characterized genetic models in  detail.
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c-Myc

The transcription factor c-Myc controls numerous cellular processes, including 
cell cycle progression and  proliferation. Mutations that activate c-Myc are known 
to be highly associated with carcinogenesis in human HCC (108). Transgenic 
mice, overexpressing c-Myc specifically in the liver, develop hepatic tumors with 
a relatively long latency of approximately 12–15 months (109–111). Tumor inci-
dence is of about 40% at 45 weeks of age, 60% at 55 weeks, and 80% at 65 weeks 
(111). To limit oncogene expression to the hepatic tissue, the albumin promoter 
has most commonly been utilized due to its specificity to hepatocytes (11). When 
c-Myc was combined with transgene expression of growth factors such as trans-
forming growth factor alpha (TGF-α) and hepatocyte growth factor (HGF), oppos-
ing results were  obtained. Combination with TGF-α led to a significant acceleration 
of the neoplastic development, with tumors developing before 16 weeks of age 
(110). In contrast, HGF prevented malignant transformation when investigated in 
a similar setting (112). Interestingly, the kinetics of carcinogenesis induced by 
c-Myc can be drastically accelerated to under 40 days by co-treatment with the 
hepatotoxins CCl4 or 5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) (113). An 
elegant study by Shachaf and colleagues demonstrated that inactivation of the 
MYC oncogene resulted in tumor regression, accompanied by differentiation of 
the tumor cells into hepatocytes and  cholangiocytes. The tumors lay dormant 
until c-Myc was reactivated in cells the authors proposed to be cancer stem cell-
like cells (114).

The E2F transcription factor 1 (E2F1) has also been identified as frequently 
dysregulated and/or mutated and was demonstrated to induce HCC in mice upon 
hepatic transgenic overexpression (115, 116). E2F1 mice showed signs of hepatic 
alterations as early as 2 months of age, with most animals developing adenomas 
at 6  months. However, tumors progressed to HCC only in one-third of experi-
mental animals at 1 year of  age. Co-expression of E2F1 and c-Myc further acceler-
ated the appearance of focal lesions and severe dysplasia, leading to earlier 
development of HCC as compared to either of the oncogenes alone (117).

Wnt/β-catenin

Wnt/β-catenin signaling controls a plethora of cellular communication networks 
in embryonic development and demonstrates key roles in regulating stemness and 
cell differentiation in health and disease (118). Pathological alterations of this 
pathway are known for its involvement in many human cancers, including liver 
cancer (118, 119). Beta-catenin is one of the key effectors of Wnt signaling, and 
its gene CTNNB1 is the most frequently found mutated component of this path-
way in human HCC (120). Altered activity of β-catenin, as evidenced by mutation 
or nuclear translocation, was observed as an early event in hepatocarcinogenesis 
driven by distinct genetic models (121). Yet, constitutive activation of β-catenin 
through deletion of its regulatory domain was not sufficient to promote hepatic 
tumorigenesis by itself (122). When combined with oncogenic H-ras (H-rasG12V), 
however, β-catenin activation resulted in aggressive HCC development with 
100% incidence within 3–4 months following the genetic manipulation (123). 
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Interestingly, the most commonly used approach to induce hepatic β-catenin acti-
vation in mice has been the selective Cre-Lox disruption of its negative regulator, 
adenomatous polyposis coli  (Apc). This indirect approach for the stabilization of 
active β-catenin was shown to lead to spontaneous hepatocyte hyperplasia and 
67% incidence of HCC in the surviving animals following 8–9 months of model 
establishment (124). Tumors generated through this model have recently been 
shown to possess a unique metabolic signature, characterized by exacerbated fatty 
acid utilization (125), suggesting that inhibition of fatty acid oxidation could be a 
potential therapeutic approach for β-catenin-induced  HCC.

Liver-specific knockout models

Liver-specific knockout models of tumor suppressor genes have also been devel-
oped and utilized either alone or in combination with other insults to study liver 
 cancer. The TP53 gene that encodes for the tumor suppressor p53 is found 
mutated in most human cancers, including HCC (126). P53 knockout mice dis-
played a significantly increased hepatocyte proliferation rate and LPC-like cells in 
periportal liver regions (127). In addition, p53-/-LPCs isolated from these mice 
and injected subcutaneously into athymic nude mice generated tumors with a 
HCC morphology (128). In a separate study, the homozygous deletion of Trp53 
(the mouse ortholog), specifically in the liver, led to HCC formation after 
14 months of age (129). The authors also showed that p53 deletion gave raise to 
tumors with a bilineal phenotype and increased proliferation of liver progenitor 
 cells. These observations support a model in which loss of function of p53 may 
promote HCC through an increase in the proliferative capacity of progenitor  cells.

Another ubiquitously expressed tumor suppressor gene frequently found 
mutated or downregulated in human HCC is phosphatase and tensin homolog 
(PTEN) (130, 131). Its phosphatase activity inhibitsphosphatidylinositol-3- 
kinases (PI3K) and consequently suppresses downstream protein kinase B (PKB/
Akt) and mammalian target of rapamycin (mTOR) growth-promoting  signaling. 
Horie et  al. generated a liver-specific PTEN knockout model through the crossing 
of albumin promoter Cre mice with PTEN-floxed mice (132). The resulting 
 conditional PTEN knockout mice showed hepatomegaly and steatosis as early as 
10 weeks of  age. At 40 weeks, features of NASH including hepatic inflammation 
and fibrosis were  observed. This model also reliably progressed to tumorigenesis, 
although with a long  latency. The incidence of hepatic adenomas was 47% at 
44 weeks, and by 74–78 weeks, 66% of animals displayed HCC (132). The mech-
anism of carcinogenesis driven by PTEN disruption has later been  addressed. It 
involves hepatic injury-dependent expansion of epithelial cellular adhesion 
 molecule (EpCAM), alpha-fetoprotein (AFP), and cytokeratin 19 (CK-19) positive 
progenitor cells (133).

Hydrodynamic tail vein injection (HTVI) models

Traditionally, genetic modifications, such as gene knockouts, knockins, and trans-
gene overexpression, were introduced in the germline of parent mouse strains to 
produce whole body genetic alterations (134). This approach has been extensively 
used in HCC research; however, advances in genetic manipulation tools, such as 

CP-007.indb   82 10/23/19   3:54 PM



Mouse Models of Hepatocellular Carcinoma 83

Cre-Lox recombination, have allowed for a much more precise spatial and 
 temporal control of candidate genes expression, and their utilization has become 
widespread (135). Notably, this kind of approach has been used to produce con-
ditional liver-specific genetic manipulations, overcoming the problem of embry-
onic lethal gene mutations as well as restricting phenotypes to the hepatic  tissue. 
Nonetheless, these are both expensive and time-consuming  strategies.

A simple and inexpensive alternative method to transfect and gene-edit 
 hepatocytes in vivo is represented by hydrodynamic tail vein injection (HTVI) of 
“naked” plasmid DNA (non-viral vector, not associated with protective proteins 
or lipids) directly into the liver of adult mice (136, 137). The technique consists 
of rapid injection of a large amount of plasmid DNA (about 50 μg in a volume of 
saline that signifies 10% of the body weight of the injected mouse) into the mouse 
lateral tail vein (138). HTVI results in transient heart dysfunction and fluid accu-
mulation in the inferior vena  cava. The enormous hydrodynamic pressure then 
forces the fluid into the liver in a retrograde movement, enlarges the liver, and 
pushes the plasmid DNA into hepatocytes via enlarged sinusoidal fenestrae and 
transient membrane pores (139), with transfection efficiencies ranging from 
around 10 to 40% of all hepatocytes (136, 140). While the liver is primarily tar-
geted, other organs including heart, kidney, lung, and spleen are also affected by 
HTVI; however, to only 0.1% of the levels achieved in the liver (138, 141). One 
caveat of HTVI is that the expression of transfected genes is transient, peaking 
within 24 h, but dropping dramatically thereafter (142). In order to circumvent 
this pitfall, HTVI has been combined with DNA recombination technologies such 
as Cre-Lox, sleeping beauty (SB) transposase, and CRISPR-Cas9, allowing for 
genomic  integration and continuous expression of genetic  modifications. HTVI 
has been used increasingly to study genetic factors influencing HCC biology, and 
a variety of HCC models have recently been developed using this  approach. 
Particularly, HTVI permits the assessment of more than one genetic alteration at 
the same time and therefore the investigation of the combinatory effects of target-
ing multiple pathways  simultaneously. A number of models created through HTVI 
are discussed below and are summarized in Figure 3.

The PI3K/AKT/mTOR pathway is central in the regulation of hepatocyte cell 
metabolism, growth, and proliferation (143). Upregulation of this pathway is fre-
quently observed in human HCC (144, 145) and is associated with poorer out-
comes (146). As described before, conditional liver knockout of PTEN, a negative 
regulator of this pathway, induces NASH-like liver disease and HCC in mice 
(132). HTVI was used to introduce a constitutively active form of AKT (myris-
toylated AKT) that induced HCC about 6 months post-injection (147). Wild-type 
mice were co-injected with SB transposase and active AKT vectors for somatic 
 integration. Disease progression resembled that of PTEN knockout mice, with 
increased lipogenesis and upregulation of genes involved in fatty acid synthesis 
(147). Importantly, the expression of transfected AKT was observed in relatively 
few cells, which were surrounded by non-transfected  hepatocytes. This is consid-
ered to be an advantage of HTVI, in that it better resembles human liver cancer, 
where only a limited number of foci are believed to give rise to HCC (140).

It was later reported that co-injection of AKT along with H-rasG12V signifi-
cantly increases the kinetics of liver tumor development, with 100% of injected 
animals presenting tumors within 4 weeks post-injection (148). Similar kinetics 
were observed when AKT was co-expressed with active β-catenin (149). 
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Interestingly, injection of H-rasG12V alone did not lead to HCC (148, 150). 
However, when expressed in p19 Arf knockout mice, H-rasG12Vinduced HCC in 
all mice within 6 weeks that otherwise did not develop with simple disruption of 
this positive regulator of p53 (150). In a similar way, H-rasG12V combined with a 
shRNA construct targeting p53 led to hepatocarcinogenesis within only 4 weeks 
(151). This study also demonstrated that oncogenic vectors can be combined 
with a SB transposase plasmid containing a firefly luciferase expression cassette, 
allowing for tumor growth to be monitored non-invasively over time through 
bioluminescence  imaging. Altogether, these results highlight the suitability of 
HTVI to create models that allow for the utilization of synergistic pathways in 
promoting HCC for rapid induction studies and proof-of-concept therapeutic 
 interventions.

Notably, the SB transposase system permits efficient genomic recombination of 
exogenous sequences; however, this approach is not specific in terms of the inte-
gration site (152). Recombination can potentially occur virtually anywhere in the 

Figure 3 Hydrodynamic tail vein injection models of hepatocellular  carcinoma. Plasmid DNA 
containing Cre-Lox, sleeping beauty transposase, and/or CRISPR-Cas9-based recombination 
sequences along with key oncogenes or tumor suppressor disruption sequences is injected 
into the lateral tail vein of young  mice. HCC develops with variable latency depending on the 
chosen genetic manipulation, as  indicated. Co-injection of luciferase expression cassette 
allows for in vivo monitoring of tumor growth by bioluminescence imaging  (BLI). HCC, 
hepatocellular carcinoma; KO,  knockout.

Fast (5-8s) injection into
lateral tail vein

(~50 µg plasmid DNA
in 2.5 ml saline)

Myristoylated AKT [HCC in 6 months (145)] 
Myristoylated AKT + H-rasG12V [HCC in 4 weeks (146)]

Myristoylated AKT + active β-catenin  [HCC in 4 weeks (147)]
H-rasG12V in p19ARF KO background [HCC in 6 weeks (148)]

H-rasG12V + Trp53 shRNA [HCC in 4 weeks (149)]
CRISPR-Cas9-mediated PTEN and Trp53 double KO

[HCC in 3 months (153)]

Co-injection of luciferase expression cassette 
allows for in vivo monitoring of tumour growth 

by bioluminescence imaging (BLI) (149) 

Variable latency depending on model

Cre-Lox, sleeping beauty
transposase, and/or

CRISPR-Cas9-based
plasmids
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genome, causing undesired disruption of off-target genes (153). The CRISPR-
Cas9 system, on the other hand, offers sequence-specific direct editing of DNA 
with only rare off-target mutations (154). In a proof-of-concept study, Xue et  al. 
utilized HTVI to generate CRISPR-Cas9-mediated knockouts of PTEN and p53, 
or combinations of the two, that phenocopied the traditional conditional liver 
knockouts of these genes (155). PTEN and/or p53 disruptions were shown to be 
present in 3 to 6% of all  hepatocytes. At 3 months post-injection, all animals with 
double disruptions developed liver tumors (155). The same approach was used to 
target β-catenin and simultaneously introduced a constitutively active version of 
 it. This notoriously less-efficient event, observed in only 0.5% of all hepatocytes, 
however, demonstrated that CRISPR-Cas9 can also be used to introduce gain-of-
function mutations, providing a highly specific and low off target method for the 
evaluation of novel gene roles in HCC development (155). Consequently, CRISPR-
Cas9 combined with HTVI has been increasingly utilized for HCC research in 
recent years (156–158).

CONCLUSION

HCC poses a global health challenge in terms of prevention, diagnosis, and 
 treatment. While epidemiological studies can provide information on associations 
between HCC and variables that influence its natural history, the progression of 
interventions into clinical practice requires demonstrated benefits and safety from 
carefully designed in vivo models such as the mouse models described  here. 
A large variety of experimental chronic liver injury and HCC models are currently 
available, each with particular characteristic features, mimicking diverse etiolo-
gies and disease progression  patterns. Selection of the most appropriate animal 
model allows for the study of disease context-specific as well as common carcino-
genic mechanisms and screening of novel therapeutic targets for clinical 
 translation. Until the tyrosine kinase inhibitor sorafenib was approved for unre-
sectable HCC in 2007, there was no FDA-approved therapies available for patients 
in advanced-stage chronic liver  disease. The improved understanding of the 
molecular mechanisms of HCC, primarily obtained from several of the animal 
models herein described, has culminated in the development of current targeted 
therapies, including sorafenib and  regorafenib. Several other agents have been 
tested, or are currently under clinical evaluation, and will hopefully contribute to 
improved HCC outcomes in the years to  come. There is no perfect animal model 
for human disease; however, mouse models are still invaluable and will continue 
to form the cornerstone of preclinical studies, designed to delineate interventions 
that are effective and safe in the  future.
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Abstract: Hepatocellular carcinoma is the fastest growing cause of cancer-
related mortality worldwide, with few treatment options and a 70% recurrence 
rate. This trend is driven largely by the recent surge in incidence of metabolic 
syndrome, non-alcoholic fatty liver disease, and non-alcoholic steatohepatitis. 
Given the central role of the liver in lipid homeostasis, altered hepatic lipid 
metabolism has been identified as a contributing factor to hepatocellular carci-
noma. Neoplastic cells are highly dependent on lipid metabolism as a source of 
energy and to support rapid cell division, and fatty acid derivatives play key 
roles in cell signaling. Aberrant expression of liver fatty acid–binding protein 
and changes in the ratio of saturated to unsaturated triacylglycerols have been 
shown to be associated with disease severity and subtype. This chapter focuses 
on metabolic reprogramming and dysregulation of lipid metabolism as hall-
marks of hepatocellular carcinoma.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the fastest growing cause of cancer-related 
mortality, with 840,000 new cases per year worldwide, nearly half of which are in 
China alone, due in part to the high (5.4%) incidence of chronic hepatitis B virus 
(HBV) infection (1–3). The incidence of HCC in the United States has tripled over 
the last four decades, resulting in more than 30,000 new cases and 20,000 deaths 
per year (1, 4, 5). HCC accounts for 75–85% of cases of primary liver cancer and 
is the sixth most common cause of cancer and the fourth most common cause of 
cancer-related death (3). A number of approaches have been developed to treat 
HCC, including liver resection, ablation, and transplantation. However, the dis-
ease is often asymptomatic at early stages and defies early detection. While the 
short-term prognosis for HCC has improved, the long-term prognosis remains 
poor, with a 5-year survival rate of 17% (6–8). Surgical resection provides the best 
chance for recovery, but the cancer is often detected too late for the treatment to 
be effective, and only about 15% of patients are eligible (9). Even in the case of 
successful resection, the 5-year rate of HCC recurrence remains about 70 % (10).

HCC is a complex disease with a number of known or suspected etiologies, 
including hepatitis B or C virus infection; non-alcoholic steatohepatitis (NASH); 
hemochromatosis; alcohol abuse; primary biliary cirrhosis; α-1 antitrypsin 
 deficiency; Wilson’s disease; and carcinogens such as aflatoxin B1, thorotrast, 
polyvinyl chloride, and carbon tetrachloride (11, 12). However, inflammation 
associated with viral hepatitis and fatty liver disease is thought to be a common 
cross- etiological factor that drives the development of over 90% of liver tumors 
(13). HBV accounts for 85% of HCC cases in endemic regions such as Southeast 
Asia and sub-Saharan Africa, whereas HCV is the leading risk factor for HCC in 
Europe and North America. While HBV and HCV have traditionally driven the 
majority of HCC cases, the proportion of non-viral HCC cases, especially due to 
NASH, is expected to increase exponentially, and the overall number of HCC 
cases is expected to skyrocket over the next decade due to increasing incidence of 
obesity and diabetes (14). Estes et al. projected that by 2030, the number of 
NAFLD cases in the United States will increase by 21%, NASH cases by 63%, and 
HCC cases by 137% (14).

The incidence of fatty liver-associated HCC is increasing in many western 
countries due to the alarming increase in the number of adults and children with 
obesity, diabetes, and metabolic syndrome (15). Lipid metabolism is among the 
liver’s most critical functions. Along with proteins, carbohydrates, and nucleic 
acids, lipids represent one of the four main classes of biomolecules. Starvation 
depletes fat reserves and causes muscle wasting, whereas excessive caloric intake 
accompanied by lack of physical activity can lead to obesity, in which fat accumu-
lates in the liver and adipose tissue, disrupting lipid homeostasis and promoting 
insulin resistance. Altered lipid metabolism is thought to induce inflammation 
and promote fibrosis (16). Defined as having a body mass index (BMI) greater 
than 30 kg/m2, obesity is one of the greatest public health challenges of this cen-
tury, affecting 700 million people worldwide (17). Now classified as a disease in 
its own right, obesity is a leading preventable cause of death and is associated 
with increased risk of diabetes, cardiovascular disease, depression, and several 
types of cancer, including esophageal adenocarcinoma, leukemia, non-Hodgkin’s 
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lymphoma, multiple myeloma, malignant melanoma, and endometrial, colorec-
tal, breast, prostate, thyroid, and renal cancers (18). Lipids play an intriguing role 
in the development of HCC, and factors associated with lipid and energy 
 dysregulation, such as obesity (19), diabetes (20), and hepatic steatosis, are risk 
factors for HCC (21). Although the different viral, genetic, chemical, and 
 metabolic etiologies of HCC vary with respect to early events leading to hepato-
carcinogenesis, they increasingly converge on a set of shared biochemical 
 pathways, of which lipid metabolism is a central player. For example, HBV 
 infection, alcoholic liver disease, and NASH lead to increased lipogenesis and 
reduction of lysophosphatidylcholine (22, 23).

The pathophysiology of metabolic syndrome is complex and involves multiple 
organ systems, but in the liver the presence of excess fat promotes inflammation 
and can lead to cycles of liver cell injury and repair. Damage to the liver is often 
progressive and can result in fibrosis and eventually cirrhosis, but the process is 
often partially reversible at the early stages with changes in diet and lifestyle 
(Figure 1).

NAFLD, CIRRHOSIS, AND HCC

While the long-term progression from NAFLD to NASH to cirrhosis to HCC over 
a period of decades is frequently observed, there are exceptions. Being overweight 
increases the risk of HCC by 17%, and obesity increases the risk by 89% (24). In 
patients with chronic HCV or HBV infection, the presence of NAFLD has been 
shown to increase the risk of oncogenesis in a synergistic manner (25), suggesting 
that lipid dysregulation is an independent risk factor for HCC.

NAFLD is on track to become the leading cause of non-cirrhotic HCC, in 
which liver cancer develops independently of cirrhosis (26–29) and might con-
tribute to cryptogenic cirrhosis, in which the otherwise non-symptomatic cirrho-
sis is discovered incidentally (30, 31). The mechanism underlying cryptogenic 
HCC is unclear but may involve progression from NAFLD-based steatosis to lipid 
catabolism such that the underlying steatosis is no longer observable (32, 33). 

Figure 1 Potential routes of progression from fatty liver to hepatocellular carcinoma. Most steps 
are at least partially reversible with lifestyle changes, but a fraction of patients at each stage 
progresses to more severe liver inflammation and fibrosis until loss of hepatic function 
becomes mostly permanent. In some patients, HCC can develop on a more rapid course 
without cirrhosis.
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Some aspects of lipid dysregulation, such as attenuated lysophosphatidylcho-
line levels, have been found to be common in patients with NASH and cirrhosis 
(34), whereas levels of the non-essential amino acids such as valine and isoleucine 
were elevated in patients with cirrhosis (35, 36). Aside from its direct risks, cir-
rhosis is also the primary risk factor for HCC, and more than 90% of patients with 
HCC have cirrhosis (37). In a study of 34,932 patients with cirrhosis, 1,960 
patients developed HCC (5.6%) within 1.3 years (37). Currently, NASH-related 
cirrhosis accounts for about 10% of liver transplantations (38).

HBV AND HCC

Several studies have reported changes in lipid metabolism associated with HBV 
infection and liver regeneration. Park et al. reported significant changes in phos-
phatidylcholine composition in HBV-infected mouse livers and found that expres-
sion of choline-phosphate cytidylyltransferase A (PCYT1A) was significantly 
delayed (39). Using an HBx transgenic mouse model, Teng et al. tracked changes 
in lipid profiles during HBV-induced HCC and observed a biphasic peak in tri-
glyceride, cholesterol, and fatty acid levels in serum and liver tissue (40). The first 
peak was associated with non-specific pro-inflammatory responses to oxidative 
stress in mouse hepatocytes. Lipid profiles then transiently resolved at 6 months 
before peaking again at 12 months, representing a terminal metabolic shift and 
formation of fatty nodules. The peaks were associated with the upregulation of the 
following five lipid metabolism-related genes, which were subsequently validated 
in human HBV-related HCC tumors: arachidonate 5-lipoxygenase, lipoprotein 
lipase, fatty acid–binding protein (FABP) 4, 1-acylglycerol-3-phosphate 
O-acyltransferase 9, and apolipoprotein A-IV (40). These results suggest that 
HBV-mediated perturbation of lipid metabolism plays a role in the mechanism of 
hepatocarcinogenesis.

DE NOVO LIPOGENESIS IN HCC

Given the role of lipids as structural, signaling, and energy storage molecules, 
there are a number of ways that lipid dysregulation could contribute to hepato-
carcinogenesis. Increased de novo lipogenesis and enforced glycolysis appear to 
be hallmarks of liver cancer (41). One reason for this is the severe metabolic 
stress experienced within the poorly vascularized tumor core during rapid pro-
liferation causing a nutrient-poor, hypoxic microenvironment on the brink of 
necrosis or apoptosis. Fatty acid oxidation can continue to provide energy 
required for cellular metabolism after glycogen has been depleted and in the 
absence of glucose from the blood. Therefore, glycolysis is elevated, and lipid 
catabolism is strongly and characteristically upregulated in HCC and other can-
cers as a means of cell survival. In rapidly proliferating tumor cells, elevated 
lipid catabolism helps to satisfy the high energy demands of the cells via acetyl-
CoA, NADH, and FADH and supplies glycerophospholipids for cell membrane 
formation (42).
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LIPID METABOLIC REPROGRAMMING

Although not fully understood and not as well studied as changes in glucose or 
glutamine metabolism, lipid metabolic reprogramming appears to be an effective 
strategy to sustain cancer stem cells in a hypoxic environment (43, 44). Tumor 
cells harboring beneficial metabolic changes, including those that produce pro-
oncogenic metabolic intermediates, may undergo clonal selection (45). For 
example, the Warburg effect is a well-known adaptive strategy in which tumor 
cells forsake normal oxidative phosphorylation in exchange for less-efficient aer-
obic glycolysis, even in the presence of oxygen (46). Similarly, glutaminolysis 
helps to sustain the Krebs cycle via increased production of citrate and 
α-ketoglutarate through elevated glutamine metabolism (47). Changes in fatty 
acid metabolism through metabolic reprogramming have also been found to play 
an important role in facilitating carcinogenesis (48). Generally, cells import fatty 
acids and other lipids from the blood, but HCC tumors upregulate genes involved 
in fatty acid biosynthesis, including SREBP-1-regulated genes such as ATP citrate 
lyase (ACLY), acetyl-CoA carboxylase (ACC), FAS, SCD-1, and GPAT, in order to 
generate fatty acids de novo (48, 49). A number of key enzymes, including ACLY, 
ACC, and fatty acid synthase (FASN), catalyze biosynthesis of fatty acids from 
citrate and acetyl-CoA. ACC catalyzes a key initial step in fatty acid biosynthesis, 
the conversion of acetyl-CoA to malonyl-CoA (50), and helps to sustain HCC 
tumors experiencing metabolic stress (51). As a rate-limiting enzyme in lipogen-
esis, elevated expression of ACCα has been reported to be an independent pre-
dictor associated with poor HCC prognosis (51). Similarly, FASN is a 
multifunctional enzyme that catalyzes the synthesis of long-chain saturated fatty 
acids during one of the final stages of fatty acid biosynthesis. FASN is over 
expressed in HCC as well as in many other types of cancer (52), and genetic abla-
tion and drug targeting studies of FASN have revealed suppressed development 
of HCC (41, 53, 54). Interestingly, aspirin has been shown to suppress abnormal 
lipid metabolism in hepatoma cells via NF-κB targeting by downregulating the 
expression of acyl-CoA synthetase long-chain family member 1 (ACSL1), which 
converts free fatty acids into fatty acyl-CoA esters, an early step in fatty acid deg-
radation and important for lipid biosynthesis (55).

To exploit fatty acids as an efficient source of stored energy, β-oxidation has 
also been shown to be upregulated in HCC and other cancers (49, 56, 57). In 
particular, 2-oxoglutarate is upregulated in HCC, and the levels of pyruvate and 
lactic acid are elevated, whereas carnitine esters, citrate, glycerol-3- phosphate, 
and free fatty acid levels are reduced (36, 58–61). This lipid-rich state is also 
associated with obesity, as obese patients not only take in more dietary fatty 
acids than non-obese patients but also hydrolyze more stored fats from adi-
pose tissue. As a result, the liver is exposed to very high fatty acid  levels. 
The liver adjusts to this stress through adaptive metabolic changes ( metabolic 
reprogramming), such as a shift to aerobic glycolysis and increased glutamine 
synthesis to provide α-ketoglutarate and citrate for the citric acid cycle, which 
collectively increase the risk of HCC (44). Obesity-mediated insulin resistance 
also promotes hyperinsulinemia, and oxidative and endoplasmic reticulum 
stress and changes in gut microbiota promote release of pro- inflammatory 
cytokines (62–68). The association between obesity and HCC suggests that 
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use of statins to treat obesity by inhibiting hepatic cholesterol biosynthesis 
and metformin to treat insulin resistance might offer some protection against 
HCC (odds ratios 0.74 and 0.38, respectively) (69, 70). FABPs, which regulate 
intracellular transport of fatty acids, are upregulated in a  number of differ-
ent cancers, including cancers of the bladder, breast, liver, lung, and prostate, 
and serve as biomarkers for cancer risk and  aggressiveness (71). In a study of 
lipid-related HCC in a mouse model, Chiyonobu et al. showed that FABP4 was 
strongly upregulated in activated hepatic stellate cells (HSCs) resident within 
murine HCC tumors as well as in human metabolic-related HCC tumors but 
not in viral or alcohol-related HCCs, suggesting a mechanistic role of HSCs in 
NASH-related HCC (72).

LIPIDOMICS

Although a number of studies have examined changes in gene expression during 
HCC (73), fully understanding diseases as complex as NASH and HCC requires 
deep understanding of the internal state of individual cells. Single-cell transcrip-
tomics is now possible; however, HCC tumor heterogeneity remains a challenge. 
A snapshot of the internal state can be partially reconstructed by assembling 
multiple complementary types of omics data. Lipidomics, first introduced in 
2003, is the branch of metabolomics charged with characterizing the diversity of 
fatty acids and other lipid products within a cell, tissue, organ, or biofluid. 
Another goal of lipidomics is to uncover the enzymatic mechanisms and turnover 
kinetics responsible for changes in lipid metabolism (74). The lipidome is com-
plex, diverse, and dynamic, representing tens to hundreds of thousands of 
molecular species in a constant state of flux (74). The following is an overview of 
how lipidomics can help elucidate the molecular mechanisms that contribute to 
HCC. The common lipidomics methods and selected lipidomics studies perti-
nent to HCC are summarized in Tables 1 and 2, respectively.

Several metabolomics and lipidomics studies involving HCC or NASH have 
been performed (Table 2). Puri et al. reported elevated levels of saturated and 
monounsaturated fatty acids (especially palmitoleic acid and oleic acid) and 
reduced levels of polyunsaturated fatty acids (e.g., linoleic acid) in patients with 
NAFLD or NASH compared to healthy controls (90). Patterson et al. compared 
plasma samples from HCC patients, healthy controls, and patients with cirrhosis 
or acute myeloid leukemia using ultra-performance liquid chromatography elec-
trospray ionization-quadrupole mass spectrometry (UPLC-ESI-QTOFMS) and 
ultra-performance liquid chromatography-electrospray ionization-triple quad-
rupole mass spectrometry (UPLC-ESI-TQMS) (91). They reported that glycode-
oxycholate, deoxycholate 3-sulfate, bilirubin, biliverdin, and several fetal bile 
acids were elevated in the plasma of patients with HCC, whereas lysophospho-
choline levels were reduced. Notably, they found that two very long chain fatty 
acids (VLCFAs), lignoceric acid and nervonic acid, were largely undetectable in 
plasma from HCC patients compared to patients with cirrhosis. Due to their 
extended length (≥22 carbons), VLCFAs are synthesized through a multistep 
elongase-dependent pathway in the endoplasmic reticulum and must be metab-
olized in peroxisomes (92).
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TABLE 1 Common lipidomics methods and selected 
lipidomics studies involving HCC

Method Description
HCC lipidomics 
studies

GC Gas chromatography (75)
(76)

UPLC-MS Ultra-high performance liquid chromatography mass 
spectrometry

(77)

MALDI-MS Matrix-assisted laser desorption/ionization mass spectrometry (78)

ESI–MS Electrospray ionization tandem mass spectrometry (79)

IMS Imaging mass spectrometry (80)

LC-MS Liquid chromatography mass spectrometry (60, 81–83)

Shotgun lipidomics Electrospray ionization mass spectrometry (82)

RPLC-MS Reversed-phase liquid chromatography mass spectrometry (84)

LC/IT-TOF MS Liquid chromatography/ion trap time-of-flight mass 
spectrometry

(85)

HPLC-MS High-performance liquid chromatography mass spectrometry (76, 86)

DESI-MSI Desorption electrospray ionization mass spectrometry imaging (87)

LC-ESI–MS Liquid chromatography electrospray ionization mass 
spectrometry

(88)

UPLC-ESI-QTOF 
MS

Ultra-high performance liquid chromatography-electronic 
spray ionization-QTOF mass spectrometry

(89)

MALDI-FTICR MS Matrix-assisted laser desorption ionization-Fourier transform 
ion cyclotron resonance mass spectrometry

(89)

GC-MS Gas chromatography mass spectrometry (83)

Lignoceric and nervonic acid, in particular, are involved in the maintenance 
of myelin, but VLCFAs are known to perform a range of functions, including skin 
barrier formation, sperm maturation, retinal functions, and liver homeostasis 
(92). VLCFAs also serve as precursors of inflammation-resolving lipid mediators, 
with potential roles in HCC formation (92). In a large case-control study compar-
ing matched blood samples from patients before and after HCC diagnosis relative 
to healthy controls, Fages et al. identified a set of 16 metabolites involved in lipid 
and amino acid metabolism and ammonium detoxification that served as predic-
tive biomarkers that differed between pre-diagnostic HCC patients and healthy 
controls, reflecting a characteristically altered metabolic state prior to HCC 
 development (93). Two studies in China also reported panels of serum amino 
acid and fatty acid biomarkers able to predict HCC with area under the curve 
(AUC) greater than 0.96 (61, 94). Lin et al. recently showed that a decrease in 
palmitic acyl-based glycerophospholipids, a key component of the cell mem-
brane, was associated with metastatic HCC (86).
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TABLE 2 Selected lipidomics studies

Study Description

Muir et al. (75) The authors reported an increased ratio of long chain n6-polyunsaturated 
fatty acids to n3-polyunsaturated fatty acids in NASH and HCC using a 
Pten-null mouse model.

Weylandt et al. (76) Using a fat-1 transgenic mouse model, the authors showed that increased 
omega-3 polyunsaturated fatty acids suppress HCC tumorigenesis by 
reducing inflammation.

Passos-Castilho et al. (77) Serum ultra-high performance liquid chromatography mass spectrometry 
(UPLC-MS) lipid profiles discriminated patients with HBV-related HCC 
from patients with chronic HBV.

Passos-Castilho et al. (78) Matrix-assisted laser desorption/ionization mass spectrometry lipid profiles 
discriminated patients with HCV-related HCC from patients with chronic 
HCV.

Krautbauer et al. (79) Ceramide levels were found to be notably reduced in HCC tissues.

Morita et al. (80) Levels of phosphatidylcholine containing palmitoleic acid or oleic acid were 
found to be elevated in HCC using imaging mass spectrometry.

Lu et al. (81) Lipid signatures varied between HCC and serum samples. Plasmalogens 
(36:4) and (40:6) are potential serum biomarkers for HCC.

Zhou et al. (60) Using liquid chromatography-mass spectrometry of serum samples, higher 
levels of long-chain acylcarnitines and lower levels of free carnitine and 
medium and short-chain acylcarnitines were detected in HCC.

Lu et al. (83) Mass spectroscopic analysis of matched tissue and serum samples from 
patients with HCC was used to evaluate the usefulness of acetylcarnitine as 
a biomarker.

Chen et al. (85) Ultra-fast LC/IT-TOF MS serum lipidomics was used to compare lipid profiles 
for patients with HBV, cirrhosis, and HCC. 75 out of 96 lipids were 
downregulated in patients with HCC compared to healthy patients.

Lin et al. (86) Lipid profiling of HCC cells revealed anomalies affecting 93 different lipids. 
Reduced palmitic acyl glycerophosholipids were associated with greater 
metastatic activity.

Li et al. (89) The number of polyunsaturated triacylglycerols with >2 double bonds was 
found to be reduced based on lipid profiling using UPLC-ESI-QTOF MS 
and MALDI-FTICR MS.

THERAPEUTIC ADVANCES TARGETING LIPID METABOLISM

Despite a better understanding of lipid metabolism, drugs targeting key steps in 
lipogenesis in various types of cancer are still in the experimental stage (Table 3) 
(95, 96). Given the central regulatory role of SREBPs in lipid metabolism, SREBPs 
represent promising drug targets. SREBP-1 and SREBP-2 are upregulated in glio-
blastoma and prostate cancer, respectively, and SREBP ablation or blocking has 
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TABLE 3 Drugs targeting lipid metabolism in tumor cells

Year Compound Target Tumor Type Model Ref.

2019 Simvastatin Lipid rafts Human lung cancer A549 cell (101)

2018 Paclitaxel and 
vinblastine

Microtubule 
dynamics

Human osteosarcoma U2OS cell (102)

2017 Betulin SREBPs Human liver cancer Diethylnitrosamine-
injected mice 
model

(83)

2017 Cetuximab Acetyl-CoA 
carboxylase 
(ACC)

Head and neck 
squamous cell 
carcinoma 
(HNSCC) 

HN5, FaDu, 
Tu159, OSC19, 
MDA1986, 
UMSCC1, and 
Tu167)

(103)

2016 Nutlin-3 and 
actinomycin D

Ceramide synthase 6 
(CerS6)

Human lung cancer A549 cell (104)

2015 TVB-2640 Fatty acid synthase 
(FASN) 

- Phase I (105)

2014 Azoxymethane/
dextran sodium 
sulfate

Sphingosine-1-
phosphate (S1P) 
lyase (SPL)

Colitis-associated 
cancer (CAC)

CAC murine model (106)

2012 C75 FASN Prostate cancer (PC) LNCaP cell (107)

2010 PX-866 PI3K Human glioblastoma U251, U87, 
LN229, and 
LN18 cells

(108)

2010 NDNSAs Unknown Human breast cancer MCF-7 cell (109)

2009 LCL385 Acid ceramidase 
(AC)

PC PPC-1 cell (110)

2009 15-dPGJ2 PPARγ Colorectal cancer  CT-26 s.c. tumor 
model and an 
HL-60 xenograft 
model

(111)

been shown to induce cancer cell death and suppression of tumor growth (95). 
However, development of drugs that directly target transcription factors is diffi-
cult, and efforts have instead focused on drugs such as betulin, fatostatin, xantho-
humol, and PF-429242 that inhibit the translocation of SREBP to the Golgi 
apparatus (95). Li et al. examined whether inhibition of de novo lipid biosynthesis 
is protective against HCC by blocking SREBP cleavage-activating protein in hepa-
tocytes using betulin in a diethylnitrosamine-induced HCC mouse model (97). 
They found that blocking or ablation of this key component of the SREBP path-
way suppressed HCC. Drugs have also been developed targeting specific steps in 
lipid metabolism. The ACC inhibitor GS-0976 has been found to reduce the 
extent of liver steatosis and fibrosis in NASH patients (98, 99), and drug targeting 
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of FASN has been shown to suppress HCC development (41, 53, 54). Several 
existing drugs such as statins and metformin are thought to have a protective 
effect against HCC (69, 70). Statins, as lipid-lowering agents, have long been used 
for the treatment of heart disease. They have also been reported to have a protec-
tive effect against tumorigenesis. Some published evidence supports the use of 
statins in HCC prevention in patients with liver disease (100).

CONCLUSION

While much progress has been made in limiting viral and environmental causes of 
HCC, new cases of NASH-related HCC are currently increasing and are likely to 
continue to increase for the foreseeable future. Many cases of NASH-related HCC 
are preventable through changes in lifestyle, including exercise and reduced 
intake of fructose and high-fat foods, but such changes are difficult to maintain. 
Therefore, there is an important unmet need to develop biomarkers to monitor 
changes in hepatic lipid metabolism in NAFLD patients, so that it is possible to 
intervene as early as possible in patients with the highest risk of progressing to 
NASH and cirrhosis. Early detection of HCC offers the best chance of treatment, 
while few procedures significantly improve survival in the case of advanced HCC. 
It is essential to determine the key molecular events that trigger hepatocarcino-
genesis in order to facilitate drug development to prevent or slow development of 
HCC. Lipidomics provides a valuable tool to assess the detailed metabolic changes 
that may lead to initiation of liver cancer.
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Abstract: Hepatocellular carcinoma is among the leading causes of cancer-related 
mortality. Due to the numerous surgical and non-surgical therapeutic options, the 
treatment strategy requires an optimal selection of patients based on tumor stage 
and liver functional reserve. A potentially curative surgical resection or liver 
transplantation is only recommended for patients with early stage disease. In this 
chapter, we overview the current topics and perspectives in the surgical manage-
ment of hepatocellular carcinoma by disease stage with a special focus on new 
surgical techniques and expanding range of indications outside of the accepted 
Barcelona Clinic Liver Cancer algorithm.

Keywords: BCLC staging system; hepatocellular carcinoma; laparoscopic liver 
resection; liver transplantation; surgical treatment.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is among the leading causes of cancer-related 
death worldwide (1). Surgical resection or liver transplantation is the principal 
treatment option, depending on various factors, such as the liver functional 
reserve and tumor stage at the time of diagnosis. However, patients with HCC 
often present with late stage disease, which severely restricts the possibility for 
surgical resection. The Barcelona Clinic Liver Cancer (BCLC) staging system has 
become established as the most widely accepted staging system for HCC. In addi-
tion, the BCLC system is a clinical treatment guideline and comprises five stages 
related to the patient’s performance, tumor condition, and liver functional reserve. 
Curative liver surgery is only recommended for early stages of HCC. In this chap-
ter, we summarize the current role of surgical resection for HCC by disease stage 
in accordance with the BCLC treatment algorithm. Furthermore, we highlight the 
limitations of surgical resection and report data that support a treatment outside 
the accepted BCLC algorithm with a special focus for “advanced” but technically 
resectable HCC. Finally, we provide an overview on the ongoing developments of 
new surgical techniques, such as laparoscopic liver resection (LLR), robot-assisted 
liver resection (RALR), the associating liver partition, and portal vein ligation for 
staged hepatectomy (ALPPS) procedure, as well as perspectives in liver 
transplantation.

CURRENT SURGICAL MANAGEMENT OF HCC

Surgical resection or liver transplantation is the mainstay of potentially curative 
treatment for HCC. In addition to the surgical treatments or in patients with HCC 
who are not candidates for major liver surgery, there are various minimally  invasive 
procedures besides systemic chemotherapy, including selective internal radiation 
therapy (SIRT), radiosurgery (Gamma Knife), transcatheter arterial chemoemboli-
zation (TACE), radiofrequency ablation (RFA), highly focused ultrasound (HIFU), 
microwave ablation (MWA), percutaneous ethanol injection (PEI), as well as 
 irreversible electroporation (IRE). In this chapter, we focus on the  current topics 
of surgical treatment for HCC at an early-, intermediate-, and advanced-stage 
based on the BCLC staging system. Furthermore, we discuss the current value of 
liver transplantation in the treatment of HCC.

Preoperative assessment

Staging of HCC is determined on the basis of size and number of tumors and the 
presence or absence of vascular invasion as well as extrahepatic lesions. The 
anatomic delineation of tumor extent is best achieved with dynamic multiphase 
computed tomography (CT), whereas the hepatic arterial phase is assessed sep-
arately from the portal venous phase with a late “wash-out” phase (2–4). 
Magnetic resonance imaging (MRI) appears to be more accurate in liver staging 
for HCC using multiphasic and multiparametric imaging by combining T1-, 
T2-, and diffusion-weighted imaging with dynamic multiphasic imaging (5–7). 
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The rate of extrahepatic disease spread of HCC at diagnosisis overall low, and 
the recognized sites of metastatic spread are lung, bone, peritoneum, and adre-
nal glands. Although not generally recommended, the 18-fluorodeoxyglucose 
positron-emission tomography (FDG-PET) can be used for the detection of oth-
erwise occult distant metastatic disease (8). However, the risk of extrahepatic 
spread is higher in patients with a large tumor >5 cm, and such patients warrant 
additional imaging studies or staging laparoscopy with intraoperative ultra-
sound (IOUS) prior to surgical resection (9). Another benefit of IOUS is the 
identification of major intrahepatic vascular structures, which can be used to 
guide segmental or non-anatomic resections (10).

According to the BCLC staging system, liver function is assessed on the basis 
of the Child-Pugh classification, the presence of portal hypertension, and the 
presence of elevated serum bilirubin concentrations (11). A scoring system for 
assessing the severity of chronic liver disease, and subsequently in prioritizing 
for receipt of a liver transplant, is the Model for End-Stage Liver Disease or 
MELD (12). Currently, this score is used by the United Network for Organ 
Sharing (UNOS) and Eurotransplant for prioritizing allocation of liver trans-
plants (12, 13). The clearance of indocyanine green (ICG-15) at 15 min can be 
used as a defining criterion for the selection of patients as well as liver resection 
type (14, 15). Moreover, the newly developed LiMAx® (Humedics, Berlin, 
Germany) test, a 13C-labelled methacetin-based metabolic liver function capacity 
test, is a suitable diagnostic tool to predict the individual risk of postoperative 
liver failure after liver surgery (16).

BCLC staging classification

Since the staging system was first published in 1999, the BCLC staging system has 
emerged as a primary system for staging as well as a clinical guideline for the treat-
ment of HCC (17). The BCLC staging system stratifies treatment algorithms based 
on the patient’s performance status, the size and number of tumor nodules pres-
ent, the presence of liver impairment, including portal hypertension, as well as 
degree of cirrhosis as measured by the Child-Pugh classification (Figure 1). The 
classification has been updated according to evidence-based data and is presently 
endorsed as the standard system for HCC management by the American 
Association for the Study of Liver Disease, American Gastroenterology Association, 
European Association for the Study of Liver and the European Organization for 
the Research and Treatment of Cancer (18–20). Nonetheless, the BCLC system 
has been heavily criticized for its extremely limited criteria for resection and its 
recommendations against potentially curative liver surgery for “advanced” but 
technically resectable HCC.

Early-stage disease

According to the BCLC algorithm, only patients with very early stage disease 
(BCLC 0), with a single lesion less than 2 cm, no evidence of portal hypertension 
and normal bilirubin levels, are recommended to undergo liver resection. Patients 
with early-stage disease (BCLC A), defined as single or three nodules less 
than 3  cm, fulfill the Milan criteria and are recommended to undergo liver 
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transplantation unless other comorbidities are present (21). Currently, there is an 
ongoing debate regarding surgical resection versus liver transplantation for (very) 
early-stage HCC. Concerning this matter, patients with preserved liver function 
and low-level cirrhosis have similar survival outcomes after liver surgery com-
pared to liver transplantation (22). Due to low availability of organs, lifelong 
immunosuppression, and larger healthcare costs, orthotopic liver transplanta-
tion should be employed for patients with more severe cirrhosis (23).

According to the BCLC algorithm, PEI and RFA are recommended for 
 early-stage disease. However, numerous studies revealed an improved survival 
outcome in patients who underwent surgical resection (24–26). A meta-analysis 
including 21,000 patients demonstrated a better overall survival as well as recur-
rence-free survival after surgical resection in comparison with RFA and/or PEI 
(24). Xu et al. confirmed this finding in another meta-analysis of over 2,500 
patients (25). In addition, a prospective randomized trial including 235 patients 
who met Milan criteria showed a 5-year overall survival of 76.65% in the surgery 
group versus 54.78% in the RFA group (26). However, due to small residual liver 
volume, low liver functional reserve, or poor performance status, only 10–35% 
of patients with very early- and early-stage disease underwent liver resection 
(19, 27). Nonetheless, these study data underline the advantages of surgical liver 
resection compared to local ablative therapies. Therefore, liver surgery should be 
offered in those patients with an early-stage HCC who can tolerate a major hepatic 
resection based on the underlying liver disease as well as comorbidities. Liver 
transplantation should be performed in patients with HCC and patients with life-
limiting cirrhosis. Otherwise, in patients with poor performance, local ablative 
therapies should be considered (23).

Figure 1 Treatment algorithm for hepatocellular carcinoma (1).
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Intermediate-stage disease

Intermediate-stage disease is defined by the BCLC staging system as patients 
with multinodular HCC and good performance status as well as no clinical 
evidence of portal vein invasion, nodal disease, or extrahepatic metastases. 
Patients with BCLC stage B are recommended for TACE, but several studies 
support surgical liver resection in intermediate stage HCC (28–31). A retro-
spective analysis of 393 patients by Zhong et al. confirmed a statistically 
 significant improvement of median overall survival of patients who under-
went surgical resection (59% vs. 29% at 3 years) compared to patients who 
underwent TACE (28). Another study from Ho et al. including 1,065 patients 
with multiple HCCs confirmed a better 5-year survival rate (36.6% vs. 11%) 
in the liver surgery group compared to the TACE group (30). Furthermore, a 
prospective analysis of 168 patients with multiple HCC lesions greater than 
5 cm showed the best 5-year survival of 50.5% in patients who responded to 
neoadjuvant TACE  followed by surgical liver resection (31). This finding was 
confirmed by a retrospective cohort study involving 110 patients (32). The 
median survival of patients who underwent TACE followed by liver resection 
was 47 months compared to 20 months in patients who received TACE alone. 
To summarize, a treatment strategy of TACE for downstaging followed by sur-
gical liver resection seems to be beneficial for patients with large and multifo-
cal, but resectable, HCCs falling within BCLC stage B.

Advanced-stage disease

The BCLC defines advanced-stage disease (stage C) as HCC with nodal and 
portal vein involvement, extrahepatic spread, or patients with poor perfor-
mance status. According to the BCLC algorithm, the treatment of patients with 
stage C HCC is systemic sorafenib therapy (33). At present, systemic treatment 
of HCC is evolving rapidly, and three new multikinase inhibitors (i.e., rego-
rafenib, lenvatinib, and cabozantinib) have been shown to be effective in 
phase 3 clinical trials (34). In the REFLECT trial, lenvatinib has shown to be 
non-inferior to sorafenib in a front-line setting (35). The treatment sequence of 
sorafenib plus regorafenib showed an important extension in overall survival of 
patients with advanced HCC, in the second-line setting (36). Based on the find-
ings of CELESTIAL phase 3 trial, a treatment with cabozantinib resulted in 
longer overall survival and progression-free survival than placebo (37). Thus, 
the multikinase inhibitor cabozantinib seems to be an additional treatment 
option for use in adults with advanced HCC previously treated with sorafenib. 
Notably, sorafenib demonstrated no benefit in the adjuvant setting in HCC fol-
lowing surgical resection or local ablation (38). To date, no new drugs are 
approved for the adjuvant setting (39). However, there are numerous retrospec-
tive studies supporting surgical resection in patients with advanced HCC 
(40–46). A retrospective study by Ruzzenente et al. showed a statistically sig-
nificant longer median survival (27 months vs. 12 months) in HCC patients 
with macroscopic vascular involvement who underwent liver surgery compared 
to systemic therapy only (41). A combination of local ablation via RFA or TACE 
and surgical resection seems to be a treatment option in patients with bilobar 
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HCC metastases, but preserved liver function (44). This finding was confirmed 
by Liu et al. by a better survival outcome in selected patients with bilobar 
metastases and satisfactory liver function who underwent a combination of 
hepatic resection and ablation compared to non-resectional therapies (45). 
Generally, in areas with high incidence of HCC, such as Asia, surgical resection 
is commonly offered to patients with stage C disease (46, 47).

In summary, the retrospective literature highlights the value of a combined 
treatment strategy involving surgical liver resection and local ablation in a selected 
patient population of advanced HCC, particularly when liver function is pre-
served. Nonetheless, the survival of advanced HCC is still poor, and prospective 
randomized controlled studies are needed to obtain data with higher quality in 
matters of multimodality treatment.

Liver transplantation

The only potentially curable treatment of HCC is orthotopic liver transplantation, 
which allows not only the cure of the HCC but also the treatment of the underlying 
liver disease (48). However, due to the strict Milan criteria of liver transplantation 
in HCC patients (which include patients with one tumor <50 mm or up to three 
tumors <30 mm) and the low availability of organs, only a small number of patients 
receive a liver transplant (21). Even though a 4-year survival rate of patients within 
Milan criteria is reported to be over 70% (21), approximately half of the patients 
develop liver cirrhosis post-transplantation (49). Nonetheless, a recent systemic 
review of 90 studies including 17,780 patients over a 15-year period confirmed the 
Milan criteria as major determinants of the prognosis of patients undergoing ortho-
topic liver transplantation for the treatment of HCC (50).

Limitations of liver surgery

Surgical liver resection should be performed in patients with HCC that is ame-
nable to a negative resection margin (R0) and in patients with good liver func-
tional reserve (23). Moreover, there is a limitation of resection by the need to 
maintain an adequate future liver remnant of commonly quoted 20% (volumetric 
prediction) in patients without pre-existing liver dysfunction (51). Remarkably, 
the accepted future liver remnant values are more conservative in patients after 
chemotherapy treatment (30%) and in patients with evidence of cirrhosis (40%) 
(52). Therefore, these patients need a more conservative approach due to lower 
functional liver reserve. Patients with advanced cirrhosis or portal hypertension 
may be better managed by liver transplantation or ablative therapies. However, 
the risk of hepatic resection must be balanced by the patient’s potential benefit 
from aggressive surgery.

PERSPECTIVES IN SURGICAL MANAGEMENT OF HCC

In the last two decades, there has been continuous development of new surgical 
techniques allowing for safer and more aggressive liver resections. Moreover, 
 surgeons have developed a deeper understanding of physiology and functional 
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reserve of the liver. Due to the broad criticism of the BCLC guidelines for recom-
mending non-surgical treatment, expansion of surgical management for HCC 
should be explored. Here, we review significant advancements in surgical man-
agement of HCC including new techniques, particularly LLR, RALR, and the 
ALPPS procedure. Moreover, we recap extended criteria for liver transplantation 
beyond the Milan criteria.

Laparoscopic liver resection

Since the first use of laparoscopy for liver surgery in 1991 (53), several studies 
have shown the safety and efficacy of LLR with many advantages, including 
reduced blood loss and shorter hospital stay (54, 55). In addition, the International 
Survey on Technical Aspects of Laparoscopic Liver Resection (INSTALL) study 
revealed an increased number of LLR cases worldwide (56). The Second 
International Consensus Conference for Laparoscopic Liver Resection was held in 
Morioka, Japan, in 2014,with the dual goal of defining the current role of LLR and 
developing recommendations and guidelines (57). Despite a lack of high-level 
studies, minor LLR has become a standard practice. In contrast, the recommenda-
tion of the consensus meeting for major LLR was that surgeons undertaking these 
procedures should be experienced in both the liver surgery and advanced laparos-
copy due to remaining risks associated with the newness of the procedure (57, 58). 
Furthermore, postoperative outcomes should be evaluated by randomized con-
trolled trials and in registries.

In terms of the oncological outcome, several retrospective studies as well as 
meta-analysis demonstrated that LLR is non-inferior to laparotomy with fewer 
adverse effects, smaller amounts of blood loss, and shorter hospital stay 
(59–64). No significant differences between open and laparoscopic liver sur-
gery were observed regarding overall survival of patients with early-stage HCC. 
Moreover, LLR seems to be superior in patients with impaired liver function 
(65, 66), and a better disease-free survival rate in advanced HCC patients was 
observed (67). Currently, a novel scoring system of surgical difficulty based on 
tumor factors (including location and relationship to large vessels) and liver 
functional reserve has been proposed as a training guideline (68, 69). In addi-
tion, this novel scoring model has been correlated with the postoperative 
 outcome (70, 71). In summary, the laparoscopic approach will lead to expand-
ing the surgical indications for HCC, especially in patients with chronic liver 
 disease. Furthermore, a step-by-step training system for surgeons based on the 
novel difficulty scoring system can make this expansion safer and more effec-
tive for patients with HCC.

Robot-assisted liver resection

Since its inception in 2002, the innovative approach of RALR has gained world-
wide acceptance (72–74). The indications for robotic liver resections are similar 
to those of LLRs, according to the Morioka consensus (57). In general, the indi-
cations are solitary lesions <5 cm and located in liver segments 2–6 (75). 
Nonetheless, a number of reviews revealed extended indications for the robotic 
approach including every segment of the liver (73, 74, 76). Contraindications 
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are tumors with the invasion of major vascular structures or patients who are 
pneumoperitoneum-intolerant. A study by Lai et al. confirmed no significant 
differences in oncological outcomes between the robot-assisted and the conven-
tional laparoscopic approach (77). Moreover, both techniques are similar in 
terms of blood loss, morbidity, and hospital stay, but prolonged operative times 
and increased costs were more evident in the robotic approach (76). The major 
advantage of RALR may lie in sectoral, segmental, or subsegmental resections in 
difficult-to-reach positions like posterior–superior segments and caudate lobe 
(78). Another benefit is the possibility of a shortened learning curve for com-
plex liver resections based on the experiences in robot-assisted pancreatic resec-
tion (79). According to the currently available literature, RALR seems to be safe 
and feasible in selected patients with HCC. However, more prospective random-
ized studies are needed to determine the exact role of RALR within the treat-
ment algorithm of HCC.

Associating liver partition and portal vein ligation for staged 
hepatectomy

The ALPPS procedure or “in situ split liver resection” is a novel two-stage surgical 
approach to induce rapid hypertrophy of the future liver remnantin a short period 
of time (80). The procedure is based on a combination of transection of the liver 
along the falciform ligament and dissection of the right portal veinin order to 
induce hypertrophy in the future liver remnant in patients undergoing an extended 
right hepatectomy. The ALPPS procedure might be considered in the following 
clinical scenarios: involvement of the right portal vein by HCC, progressive HCC 
with high risk for tumor progression between two stages of conventional surgical 
approach, and progressive HCC with extension to the vena cava or right heart 
atrium. Contraindications for ALPPS include inoperable hepatic metastasis in the 
future liver remnant, significant portal hypertension, and unresectable extrahe-
patic metastasis (81).

Nonetheless, ALPPS is associated with several adverse effects, including 
biliary leakage and intraperitoneal infection (82). An overall mortality rate of 
59–64% has been reported in association with ALPPS (83). According to the 
international ALPPS registry, the overall 90-day mortality rate was 8.8%, in 
which 75% of deaths were related to postoperative liver failure. Moreover, 
patients with a model of end-stage liver disease (MELD) score of more than 10 
showed a significantly increased mortality (84). For this reason, controversy 
exists regarding the use of ALPPS in real clinical practice, and patients should 
be carefully evaluated and selected in order to avoid postoperative small-for-
size syndrome or acute liver failure (85). However, the evidence of oncological 
endpoints as well as technical availability of ALPPS is scarce up to now, and 
recent studies reported a perioperative mortality rate of 31% for HCC patients 
(86). In summary, the ALPPS procedure should be considered only in a highly 
selected patient population and should only be performed in highly specialized 
centers for liver surgery. Further studies are needed to determine the criteria 
for use of ALPSS and to define its value compared to other treatment  algorithms 
of HCC.
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Perspectives in liver transplantation—extended criteria

Since its establishment by Mazzaferro et al. in 1996 (21), the Milan criteria have 
been applied widely around the world in the selection of patients for orthotopic 
liver transplantation. However, the Milan criteria are very restrictive concerning 
post-transplant recurrence rates and could be expanded, as long as patient out-
come is not impaired. The University of California San Francisco (USCF) crite-
ria are the most widely accepted for the expansion of the Milan criteria: a solitary 
tumor ≤65 mm, or two to three tumors ≤45 mm, and total tumor diameter 
≤80 mm, without vascular invasion or distant metastasis (87). According to Yao 
et al., the USCF 1-year and 5-year survival rates from lifetime data of 70 patients 
over a 12-year period were 90 and 75%, respectively (87). Moreover, the disease 
recurrence rates were comparable to those of the Milan criteria (88). Currently, 
further extended criteria for the selection of patients with HCC beyond the 
Milan criteria are subject of ongoing research. Assessment of the two clinical 
biomarkers, alpha-fetoprotein (<200 ng/mL) and des-gamma carboxyprothrom-
bin (<400 mAU/mL), showed an improved selection of patients with HCC for 
liver transplantation (89–91). A study by DuBay et al. confirmed excellent post-
liver-transplantation survival rates of patients with any HCC size and number, 
when an aggressive bridge-to-transplant therapy was applied and a poorly 
 differentiated tumor was ruled out by liver biopsy (92). Tumor growth beyond 
the acceptable size can cause a drop out from the waiting list for transplantation. 
Importantly, liver resection prior to transplantation does not increase the mor-
bidity or impair long-term survival following liver transplantation in selected 
patients (93).

However, excessive expansion of inclusion criteria will result in an increase 
in waiting time and a deterioration of survival among patients on the waiting 
list (94). Thus, the decision for a liver transplantation beyond the Milan crite-
ria should be based on a case-by-case consideration, balancing the operative 
risk versus the potential survival benefit. Moreover, liver resection should be 
considered as a bridge-to-transplant option in highly selected patients with 
HCC.

CONCLUSION

HCC is a tumor with highly variable biology that often occurs in the setting of 
chronic liver disease. Patients often present with late stage disease, which excludes 
surgical resection from the treatment options. In this chapter, we have highlighted 
the current topics and perspectives in surgical management of HCC. Treatment 
strategies require optimal selection of therapies based on various tumor factors 
and liver functional reserve. The introduction of new surgical techniques, espe-
cially the laparoscopic approach; the combination of surgery with ablative thera-
pies; and the expansion of indications for surgery beyond the conservative BCLC 
algorithm as well as beyond the Milan criteria have increased the variety of surgi-
cal treatment options for carefully selected patients with HCC. However, regard-
ing the complexity of all treatment options, more detailed, rigorous studies are 
needed to determine evidence-based guidelines.
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Abstract: Hepatocellular carcinoma is the third leading cause of cancer-related 
mortality in the world. Locoregional therapy is used for early stage hepatocellular 
carcinoma. Tyrosine kinase inhibitors have been the mainstay of treatment for 
advanced hepatocellular carcinoma. Sorafenib was the first drug approved based 
on data from two pivotal phase III trials. Although sorafenib provided a survival 
benefit, development of adverse events limits its use in some patients. These 
adverse events, such as hand–foot syndrome and diarrhea, have a significant 
impact on the quality of life and, in some circumstances, are severe enough to 
prompt cessation of the drug. In recent times, a range of new therapeutic options 
have come on the scene including lenvatinib, regorafenib, and cabozantinib. 
Lenvatinibis now approved as an alternative first-line agent for hepatocellular 
 carcinoma. Regorafenib and cabozantinib are both second-line agents. These 
medications provide a promising range of treatment options for patients who 
progress on sorafenib or are intolerant to it. This chapter provides an insight into 
the range of tyrosine kinase inhibitors available for the treatment of hepatocellular 
carcinoma.
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INTRODUCTION

Hepatocellular carcinoma (HCC) accounts for 90% of primary liver cancer and 
is the third leading cause of cancer-related mortality in the world. Despite 
advances in treatment, 5-year survival rates are still poor at 18% (1). 
Unfortunately, up to 80% of patients present with advanced, incurable disease 
(2). The Barcelona Clinic Liver Cancer (BCLC) algorithm was published in 1999 
and is the most widely used staging system. There are other staging systems in 
use such as the Hong Kong Liver Cancer staging system but these are not as 
commonly applied. BCLC guidelines classify patients with preserved liver func-
tion who have macrovascular invasion or extrahepatic spread of disease and 
Eastern Cooperative Oncology Group performance status (ECOG) 1–2 as  having 
advanced stage  disease (Stage C) (3) (Figure 1). In this group of patients, sys-
temic therapy is recommended (3). Prior to 2007, there was a lack of effective 
treatment options for patients with advanced HCC. Traditional chemotherapeu-
tic agents were non-targeted and resulted in significant side effects due to their 
widespread cytotoxic or cytostatic mechanisms of action. It was evident that 
therapies such as doxorubicin and FOLFOX (fluorouracil, leucovorin, oxipla-
tin) had insufficient antitumoral activity and caused excessive toxicity in the 
context of cirrhosis. As a result, the ongoing development of systemic therapies 
is centered on the development of more targeted systemic therapies. The realm 
of systemic therapy for HCC is rapidly evolving and encompasses a range of 
drugs such as tyrosine kinase inhibitors (TKIs), monoclonal antibodies (ramu-
cirumab), and immune check point inhibitors (nivolumab and pembrolizumab). 
As the focus of this chapter is TKIs (Table 1), other systemic therapies will not 
be discussed here. The authors recommend referring to “Immune checkpoint 

Figure 1 BCLC staging system and treatment strategy (3).
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inhibition: Prospects for prevention and therapy of hepatocellular carcinoma” 
by Elsegood et al. for further information (4). Tyrosine kinases are involved in 
the activation of a wide range of proteins by phosphorylation. TKIs bind to the 
active site of tyrosine kinases, thus preventing phosphorylation and inhibiting 
downstream signal transduction of a range of growth factors. By blocking the 
key tyrosine kinase pathways in cancers such as the vascular endothelial growth 
factor receptor (VEGFR), epidermal growth factor receptor 2(EGFR), and plate-
let-derived growth factor (PDGFR), tumor growth is halted. 

SORAFENIB

Sorafenib was the first TKI to receive approval from the Food and Drug 
Administration (FDA) for systemic treatment of HCC in 2007 and remains the 
first-line therapy. It is an oral multi-kinase inhibitor that targets VEGFR2, 
VEGFR3, PDGFR, c-kit, FLT-3, and RET (5). This in turn prevents tumor angio-
genesis and tumor cell proliferation, increasing the rate of apoptosis. The Sorafenib 
Hepatocellular Carcinoma Assessment Randomized Protocol (SHARP) study and 
the Asia-Pacific trial were the two major trials which proved the efficacy of 
sorafenib.

The SHARP study was a phase III, randomized, double-blind, placebo- 
controlled trial carried out between 2006 and 2008 (5). It was conducted across 
multiple centers in North America and Europe. Child-Pugh (CP) A patients with 
advanced HCC who had not previously had any systemic treatment were recruited 
for the trial. For trial inclusion, the patients were required to have adequate 
hepatic, renal, and hematological reserve, and an ECOG of 0–2. 602 patients were 
included and randomized in a 1:1 ratio to oral sorafenib 400 mg twice a day ver-
sus placebo.

The Asia Pacific trial was also a multinational, phase III, randomized, double- 
blind placebo-controlled trial (6). It had similar inclusion criteria to the SHARP 
trial but was carried out in the Asia Pacific region; 226 patients were enrolled 
and randomized in a 2:1 ratio to sorafenib 400 mg twice a day versus placebo. 
Both trials permitted dose reductions in treatment interruptions in the event of 
drug toxicity.

The SHARP study demonstrated an improvement in overall survival of 2.8 
months in favor of sorafenib (10.7 vs. 7.9 months, hazard ratio [HR] 0.69) (5). 
This effect was also seen in the Asia Pacific trial with sorafenib improving overall 
survival from 4.2 to 6.5 months (HR 0.68) (6). The difference in median survival 
between the two trials can be attributed to differences in the study populations. 
The patients in the Asia-Pacific trial were younger (51 years old vs. 65 years old), 
had predominantly Hepatitis B-related disease (75% vs. 18%), and had more 
advanced disease with more extrahepatic spread.

Dose reductions due to adverse events (AE) were common across both trials 
(26% in SHARP, 30.9% in Asia Pacific trial) (5). The most common TKI-
associated AEs and their relevant management strategies are discussed later in 
this chapter. The median duration of treatment was only 5.3 months in the 
SHARP trial (5). Unfortunately, tolerability of sorafenib impacted on the 
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duration of treatment and hence survival. A pooled analysis of the SHARP and 
Asia Pacific trials was undertaken to determine the predictors of sorafenib 
 benefit. It was found that patients who developed early dermatological AEs 
(within the first 60 days) had a better median overall survival than those who 
did not (18.2 vs. 10.1 months) (7).

With the widespread usage of sorafenib, there is now real-world data available 
for comparison with the two phase III trials. The Global Investigation of 
Therapeutic Decisions (GIDEON) study was a large prospective observational reg-
istry with 3,371 patients to evaluate the safety and usability of sorafenib in the 
HCC population. This cohort demonstrated that a higher CP score and a higher 
BCLC stage were associated with a shorter median survival—CP A: 13.6 months, 
CP B: 5.2 months, and CP C: 2.6 months (8). It also showed that the overall inci-
dence of AE was comparable between CP A and B patients (8). A Taiwan-based 
study by Huang et al. used sorafenib in a broader HCC population, including 
patients who were CP B and CP C. They reported median overall survival rates of 
8 months (9).

As there is significant genetic heterogeneity in HCC, this can result in both 
primary and secondary loss of response to sorafenib. Other therapeutic options 
are required for patients who have lost response. The benefits of sorafenib in 
 combination with other therapies are being investigated. There have been trials 
combining sorafenib with doxorubicin, and radioembolization with Yttrium90 
and erlotinib. At present, none of these trials have shown an improvement in 
median overall survival (10–13). The STORM trial was a phase III study compar-
ing adjuvant sorafenib to placebo after radiofrequency ablation or hepatectomy. 
The use of sorafenib did not result in an improvement in recurrence-free survival 
(14). Further research into combination therapies that include sorafenib is 
required to provide advanced HCC patients with more therapeutic options.

LENVATINIB

Sorafenib, which was shown to improve survival in the SHARP and Asia-Pacific 
trials, has been the standard first-line therapy for unresectable HCC since 2007. 
Since then, other molecular-targeted agents have been developed and tested in 
clinical trials. However, this has been marked by four failed phase III trials evalu-
ating sunitinib, brivanib, linifanib, and erlotinib plus sorafenib that did not show 
non-inferiority or superiority to sorafenib in terms of overall survival in the first-
line treatment of HCC (10, 15–17). These negative trials created a need to develop 
new drugs as first-line agents for the effective management of HCC.

Lenvatinib was discovered at Tsukuba Research Laboratory in Japan as a result 
of research on angiogenesis inhibitors. It is an oral multikinase inhibitor that tar-
gets VEGF receptors 1–3, FGF receptors 1–4, PDGF receptor α, RET, and KIT and 
is an extremely effective inhibitor of tumor angiogenesis (18). It has shown activ-
ity against a range of solid tumors. Lenvatinib monotherapy is approved for the 
treatment of radioiodine-refractory differentiated thyroid cancer (19). With evero-
limus, it is used as a combined treatment for advanced renal cell carcinoma 
 following one previous antiangiogenic therapy (20). The studies proving efficacy 
of lenvatinib in advanced HCC are described below.
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A phase II trial in patients with HCC conducted in Japan and South Korea 
confirmed the potent antitumor effect of lenvatinib and the feasibility of manag-
ing AEs in patients with HCC (21). It was a phase II, single-arm, open-label 
multicenter study which was conducted on 46 patients between July 2010 and 
June 2011 with advanced HCC who did not qualify for surgical resection or local 
therapies. The patients received a dose of 12 mg once daily in 28-day cycles. The 
median time to progression was 7.4 months (95% CI: 5.5–9.4). The median 
overall survival was 18.7 months (95% CI: 12.7–25.1). Seventeen patients (37%) 
had partial response and 19 patients (41%) had stable disease (20). The most 
common any-grade AEs were hypertension (76%), palmar–plantar erythrodyses-
thesia syndrome (65%), decreased appetite (61%), and proteinuria (61%). Dose 
reductions and discontinuations due to AEs occurred in 34 (74%) patients and 
10 (22%) patients, respectively (20). Dose reductions were needed more often in 
patients with a low body weight. A later detailed analysis of the pharmacokinet-
ics of lenvatinib in patients with HCC determined that the optimal dose was 
8 mg/day for patients weighing less than 60 kg and 12 mg/day for patients weigh-
ing 60 kg or more. These findings paved the way for the phase III trial named the 
REFLECT study.

The REFLECT trial was an open label phase III, multicenter non-inferiority 
trial which enrolled patients with unresectable HCC who had not received prior 
systemic chemotherapy. This was conducted at 154 sites across 20 countries. 
Stratification factors included region (Asia or non-Asia), macroscopic portal vein 
involvement and/or extrahepatic spread, ECOG performance status (0 or 1), and 
body weight (<60 kg or ≥60 kg); 954 eligible patients were randomized in a 1:1 
ratio to lenvatinib (12 mg daily for body weight ≥60 kg, and 8 mg daily for body 
weight <60 kg) or sorafenib (400 mg twice daily for all patients) arms. Treatment 
was continued until disease progression or occurrence of intolerable adverse 
event. The primary endpoint was overall survival, measured from the date of ran-
domization until the date of death from any cause (22).

Secondary endpoints included evaluation of progression-free survival, time to 
progression, objective response rate, quality-of-life measurements, and plasma 
pharmacokinetics lenvatinib exposure parameters.

Lenvatinib was non-inferior to sorafenib revealing that the median survival 
time for lenvatinib was 13.6 months (95% CI 12.1–14.9), and for sorafenib, it 
was 12.3 months (95% CI 10.4–13.9). The objective response rate for lenvatinib 
was higher (24% vs. 9%), and the median time to progression was longer (7.4 vs. 
3.7 months, HR = 0.66, 95% CI 0.57–0.77) (22).

From the AEs point of view, the rate of grade 3 or 4 hypertension was higher 
with lenvatinib (23% vs. 14%), while the hand–foot skin reaction was more fre-
quent with sorafenib (52% vs. 37%any grade, and 11% vs. 3% grade 3 or worse), 
as was alopecia of any grade (25% vs. 3%) (22).

Based on the REFLECT study, lenvatinib was approved in Japan in March 
2018 for the treatment of unresectable HCC. In August 2018, it received 
approval in the United States adding another agent to the arsenal of medications 
used as the first-line treatment of HCC. Consensus-based guidelines from the 
National Comprehensive Cancer Network (NCCN) suggest limiting the use of 
lenvatinib to individuals with CP A cirrhosis. Therapeutic combinations involv-
ing lenvatinib with an immune checkpoint inhibitor have potential as future 
treatment strategies (23).
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REGORAFENIB

Regorafenib is an oral diphenylurea multikinase inhibitor that targets kinases 
involved in tumor angiogenesis, cell proliferation, and survival (24, 25). Its 
chemical structure is similar to that of sorafenib, differing only in the presence 
of an extra fluorine atom. This change in structure is theorized to provide a 
wider range of targets to inhibit (25). Regorafenib was initially used for the 
treatment of metastatic colorectal cancer and gastrointestinal stromal tumors. In 
2017, regorafenib received FDA approval for the treatment of patients with 
advanced HCC who had previously been treated with sorafenib. Despite this, 
regorafenib is currently not approved by the Therapeutic Goods Administration 
in Australia.

The RESORCE study was the first successful randomized, double-blind, par-
allel group, phase III trial for regorafenib. It was a multicenter trial conducted 
across 152 sites in 21 countries; 573 patients were enrolled and randomized 
in a 2:1 ratio to regorafenib 160 mg or placebo for the first 3 weeks out of every 
4-week cycle. Both groups received best supportive care (26). The study 
included CP A patients with BCLC stage B or C disease who had documented 
progression of their disease on imaging despite sorafenib. Patients must have 
been able to tolerate sorafenib at a dose of at least 400 mg daily for 20 out of 
28 days (26). Exclusion criteria were intolerance of sorafenib and failure of pre-
vious systemic therapy.

The study’s primary endpoint was overall survival, defined as time from ran-
domization to death from any cause. Secondary endpoints were progression-free 
survival (based on radiological or clinical data), time to progression, objective 
response (complete or partial response), and disease control rate (defined as com-
plete response, partial response, or stable disease for >6 weeks based on mRECIST 
criteria). Treatment was continued until progression, death, or unacceptable tox-
icity from the drug.

The RESORCE trial showed that regorafenib increased survival, as compared 
with placebo, from 7.8 to 10.6 months (HR = 0.63, P < 0.0001). Progression-free 
survival in patients on regorafenib also increased from 1.5 to 3.1 months 
(HR = 0.46, P < 0.0001); 54% of patients had stable disease with 23% experienc-
ing a progression in their disease (26). Subanalysis showed that patients treated 
with sorafenib and regorafenib had a longer survival time of 26.0 versus 
19.2 months in patients who had sorafenib and placebo (27).

Of note, 93% of patients on regorafenib experienced an adverse event with up 
to 50% having a severe (Grade 3 or 4) adverse event. This would have resulted in 
interruption to treatment and dose reduction. As the duration of dose interrup-
tion and degree of dose reduction were not formally reported in the results of the 
trial, it is difficult to ascertain its effect on the results.

Real-world data are available since the RESORCE trial. A retrospective multi-
center study in Japan by Ogasawara et al. has verified the safety and efficacy of the 
medication in advanced HCC. The median progression-free survival is compara-
ble to that of the RESORCE trial. The Japanese study did have a significantly 
longer median overall survival of 17.3 months (28). However, this difference may 
be attributable to the use of other systemic therapies such as lenvatinib in the 
patients who discontinued regorafenib.
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Based on the existing data, regorafenib is a suitable second-line therapy for 
advanced HCC in patients who tolerated sorafenib, even if they experienced pro-
gression. It is yet unclear if it would be appropriate to use in a sorafenib naïve 
population.

CABOZANTINIB

Cabozantinib is another oral multikinase inhibitor targeting multimodal path-
ways. Cabozantinib was evaluated for its inhibitory activity against a variety of 
kinases and was identified as an inhibitor of MET (hepatocyte growth factor 
receptor protein) and VEGF receptors. In addition, cabozantinib inhibits other 
tyrosine kinases including the GAS6 receptor (AXL), RET, ROS1, TYRO3, MER, 
the stem cell factor receptor (KIT), TRKB, Fms-like tyrosine kinase-3 (FLT3), and 
TIE-2 (29, 30). MET and AXL genes are associated with poor prognosis and devel-
opment of resistance to VEGF inhibition. Thus, developing inhibitors that simul-
taneously inhibit VEGF and other pathways involved in tumor invasion and 
metastasis may confer broad and potent antitumor efficacy. Cabozantinib was ini-
tially indicated for the treatment of advanced renal cell carcinoma in treatment 
naïve adults with intermediate or poor risk or in adults following prior treatment 
with VEGF-targeted therapy.

Efficacy of cabozantinib in treating advanced HCC was shown in phase III 
CELESTIAL trial (31). It was a randomized double-blind multicenter study con-
ducted across 95 centers in 19 countries. A total of 707 patients were enrolled and 
randomized in 2:1 ratio to cabozantinib 60 mg or placebo. Eligible patients had 
received previous treatment with sorafenib, had evidence of disease progression 
after at least one systemic treatment, and could have received up to two previous 
systemic treatments for advanced HCC. The patients were 18 years of age or older 
who had received a pathological diagnosis of HCC not amenable to curative treat-
ment and had CP A cirrhosis. Furthermore, patients were required to have an 
ECOG score of 0 or 1. Exclusion criteria included previous treatment with cabo-
zantinib and uncontrolled clinically significant illness.

The trial’s endpoint was overall survival defined as the time from randomiza-
tion to death from any cause. Secondary endpoints were progression-free survival 
defined as the time from randomization to radiographic progression or death from 
any cause whichever occurred first and objective response rate (the percentage of 
patients with a confirmed complete or partial response). Tumors were assessed 
by computed tomography or magnetic resonance imaging at baseline and every 
8 weeks after randomization.

CELESTIAL trial showed that cabozantinib increased the median overall sur-
vival as compared to placebo from 8.0 months to 10.2 months (HR = 0.76, P 0.005) 
(31). The difference was more pronounced when the analysis was  limited to 
patients whose only prior therapy was sorafenib (median overall survival: 11.3 vs. 
7.2 months). The median progression-free survival was also higher on  cabozantinib, 
5.2 months as compared to 1.9 months on placebo (HR = 0.44, P <0.001). The 
most common grade 3 or 4 AEs with cabozantinib were palmar–plantar erythro-
dysesthesia (17% vs. 0% in the placebo group), hypertension (16% vs. 2%), 
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increased aspartate aminotransferase (12% vs. 7%), fatigue (10% vs. 4%), and 
 diarrhea (10% vs. 2%) (31).

The success of the clinical trial for cabozantinib expands the agents available for 
HCC therapy as second-line treatment. Based on these findings, in January 2019, 
cabozantinib was approved for treatment of patients with HCC who have been 
 previously treated with sorafenib. Consensus-based guidelines from the NCCN rec-
ommend considering cabozantinib only for patients with CP A cirrhosis.

ADVERSE EFFECTS AND MANAGEMENT

Within clinical trials, AEs were graded according to severity—Grade 0 (none), 
grade 1(mild), grade 2(moderate), and grade 3 (severe). Grade 0 to grade 2 AEs 
did not require any change to the treatment regime. Grade 3 AEs necessitated an 
interruption to treatment until improvement in symptoms. Patients with grade 3 
AEs were also given reduced doses if the event re-occurred on recommencing the 
medication.

Across the four sentinel phase III trials done for sorafenib, regorafenib, lenva-
tinib, and cabozantinib, a significant proportion of patients reported drug-related 
AEs. The incidence of grade 3 AEs ranged from 45% to 75% (5, 6, 26, 31). This 
indicates that a majority of patients would have experienced an interruption to 
their treatment or dose reduction because of AEs. The most common AEs and 
their management recommendations are detailed below.

Hand–foot syndrome (HFS)

Hand–foot syndrome is also known as palmar–plantar erythrodysesthesia. It is a 
common reaction to TKIs which can occur within days of commencing the drug. In 
some cases, presentation is delayed and can commence several months after the 
initiation of the drug. It is most commonly seen with regorafenib, occurring in 53% 
of patients (26). It was also the most prevalent AE in sorafenib, lenvatinib, and cabo-
zantinib trials, occurring in 21%, 27%, and 46% of patients, respectively (4, 5, 30). 
The hands and feet are frequently involved. Symptoms include altered sensation 
(numbness and tingling), stiffness, and pain. Erythema is often seen with some 
patients also experiencing hyperkeratosis or onycholysis. HFS can affect patients’ 
ability to perform activities of daily living, impairing the quality of life (32).

Diagnosis is made clinically. Recommendations for the management of HFS 
are largely derived from clinical experience rather than trials. Prophylactic use of 
emollients and urease-based creams three times a day results in decreased inci-
dence of HFS (33). Other strategies include avoiding mechanical trauma to hands 
and feet in the form of friction or extreme temperatures. This entails wearing well-
fitting shoes with padded insoles and using non-foaming cleansers (33).

If HFS develops, topical corticosteroid cream and topical lignocaine are rec-
ommended for symptomatic relief. Oral analgesics can be used with caution. 
Cessation or dose reduction of the drug leads to improvement in symptoms but 
this is not ideal from a HCC perspective. Temporary cessation and re-introduction 
of the drug when symptoms have completely resolved is recommended. If severe 
symptoms recur, a dose reduction or discontinuation may be necessary.
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Diarrhea

Diarrhea is the second most common AE. It is strongly associated with sorafenib 
and cabozantinib, occurring in 55% and 54% of patients, respectively (33). Initial 
management includes cessation of lactulose and making dietary changes to avoid 
food triggers. Sufficient fluid intake should be emphasized to ensure patients do 
not become dehydrated. When the above strategies are insufficient to manage 
symptoms, loperamide is recommended, with a maximum dose of 16 mg per day.

Hypertension

Hypertension is a common side effect of all TKIs. Patients taking lenvatinib and 
regorafenib had the highest incidence of hypertension (42% and 31%, respec-
tively) and the largest number of patients with grade 3 hypertension (23% and 
15%). In comparison, only 5% of sorafenib-treated patients reported hyperten-
sion. Of these, 2% of patients had grade 3 hypertension (33).

It is recommended that all patients have their blood pressure checked prior to 
commencing TKI treatment and be monitored throughout their treatment course. 
Angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers 
(ARBs), and beta blockers are all appropriate choices for the management of 
hypertension.

Fatigue

It is difficult to differentiate whether the fatigue reported by patients is due to TKIs 
or may be a symptom of advanced HCC and cirrhosis. Fatigue may also be associ-
ated with malnutrition caused by other TKI-associated AEs. Physical exercise has 
been shown to reduce fatigue in patients with advanced malignancy (33). 
Management is largely supportive in the form of encouraging adequate rest and 
nutrition.

Nausea and vomiting

Nausea, vomiting, decreased appetite, and weight loss are the common side effects 
of TKIs. The prevalence of nausea was highest in patients on cabozantinib (31%) 
and sorafenib (24%). Although relatively common, nausea and vomiting were 
rarely severe with less than 2% of patients across all studies experiencing grade 3 
nausea and vomiting (33). Antiemetics can be utilized for symptom control. 
Ondansetron can cause QT prolongation and should be used with caution in 
combination with sorafenib, cabozantinib, and lenvatinib, as these agents can also 
cause QT prolongation.

CONCLUSION

TKIs have been the mainstay of systemic treatment for advanced HCC since 2007. 
Although AEs limit their usage, patients who can tolerate TKIs do have a survival 
benefit. The landscape in the management of advanced HCC has been changing 
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rapidly over the past few years. With the new arsenal of therapies available for 
advanced HCC, sorafenib is no longer the sole therapeutic option. Lenvatinib, the 
new first-line agent for unresectable HCC patients, though non-inferior to 
sorafenib in terms of overall survival, did demonstrate significantly improved 
progression-free survival and objective response rates, while also being generally 
well tolerated. Either option is reasonable for selection by the treating physician. 
Similarly, second-line options are also available now. While these agents provide a 
multitude of additional therapeutic options, some questions remain to be 
addressed. The data on second-line agents have been reported in patients who 
had prior sorafenib and not lenvatinib. The choice of second-line agents may be 
based on various factors including physicians’ comfort, familiarity with using a 
particular agent, and patient choice after education regarding safety profile. 
Finally, the impact of various combination therapies on advanced HCC is cur-
rently being investigated. Combination therapies with TKIs and PD-1 inhibitors 
are currently in their early phase and are being evaluated in terms of safety and 
tolerability. These ongoing developments will certainly go a long way. Although 
great strides have been made, ongoing progress is still needed and yet to come.
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Abstract: Although there has been tremendous progress in the treatment of hepa-
tocellular carcinoma over the past decades, multidrug resistance to chemotherapy 
and targeted therapy remains a major hindrance in its successful management. 
Multidrug resistance, whether intrinsic or extrinsic, is a multifactorial process that 
includes enhanced drug efflux, decreased drug uptake, intracellular sequestra-
tion, metabolic alterations, aberrant apoptotic and autophagic signaling, changes 
in tumor microenvironment, and acquisition of stem cell-like properties by the 
cancer cells. Although many experimental strategies have been developed to over-
come drug resistance, translation of the knowledge to the clinic has not been 
crowned with success. This chapter provides an overview of the role of multidrug 
resistance in hepatocellular carcinoma and the potential approaches to overcome 
this obstacle.
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INTRODUCTION

Hepatocellular carcinoma (HCC), the most common type of liver cancer, is 
increasing in prevalence with a high mortality rate. It is considered the fifth most 
detected cancer in men and seventh in women in the USA, and represents the 
third most leading cause of cancer-related death in the world. The highest inci-
dence rate of liver cancer in the world occurs in Asia and Africa; hepatitis viruses 
(B and C) account for approximately 80% of all HCC cases (1). About 80% of 
HCC patients are currently diagnosed at advanced stages of the disease and are 
not suitable candidates for surgical resection of the tumor. Systemic chemother-
apy with cytotoxic agents (5-Fluoracil, doxorubicin, cisplatin, and oxaliplatin) 
and targeted therapy with the tyrosine kinase inhibitor sorafenib are the main 
approaches for these patients; however, chemotherapy resistance remains a major 
clinical obstacle (2). In addition to drug resistance, sorafenib failed to be an opti-
mal treatment modality for some advanced HCC patients due to adverse effects 
and high costs (1). Extensive studies have been carried out in the last few decades 
to enhance the efficacy of anticancer drugs by overcoming chemoresistance, but 
translating this knowledge to the clinic still represents a critical challenge. Thus, 
there is an urgent need to focus on elucidating the mechanisms of chemoresis-
tance, especially multidrug resistance (MDR), and develop novel methods or tools 
for the treatment of HCC patients.

MECHANISMS OF MDR

MDR can be either intrinsic or acquired. In intrinsic resistance, the cancer cells are 
inherently resistant or unresponsive to therapeutics. In acquired resistance,  cancer 
cells that were initially responsive become unresponsive during the course of 
treatment. MDR is multifactorial, and pleiotropic cellular signals are simultane-
ously involved in this process. These include upregulation of drug efflux, 
 downregulation of drug uptake, sequestration of drugs, alteration in drugs 
 metabolism, abnormal expression of non-coding RNAs, blockage of apoptotic 
 signals, change of tumor environment, acquiring stem-cell like characteristics 
and autophagy (Figure 1) (3). More than one MDR mechanism can occur in a 
single cancer type, which pose significant challenges for a thorough understand-
ing of the signaling network (4).

Enhanced drug efflux

Molecular pumps that transport cytotoxic drugs across the membrane of cancer 
cells represent a primary cause of chemotherapeutic resistance. Hyperactivation 
of these molecular pumps decreases intracellular drug concentrations and results 
in drug resistance. Permeability-glycoprotein, also referred to as P-gp, MDR-1, or 
ATP-binding cassette subfamily B member 1 (ABCB-1), is a well-studied 170 kDa 
plasma membrane drug efflux protein. It belongs to the adenosine triphosphate 
binding cassette (ABC) transporter superfamily, which includes MRP-1 (MDR 
protein), TAP1 (Transporter 1, ATP-binding cassette subfamily B member), and 
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BCRP (breast cancer resistance protein) (5). ABC transporters are members of a 
conserved family of transmembrane proteins that utilize ATP as energy source to 
transport various substances, such as metabolic products, sterols, lipids, and 
drugs, across cellular membranes. The ABC proteins are comprised of cytosolic 
and transmembrane domains (6), and are essential for normal cellular functions. 
However, overexpression of ABC proteins in cancer cells usually leads to insuffi-
cient intracellular concentration and bioavailability of cytotoxic drugs as well as 
their metabolites (7). From a pharmacological point of view, although drug 
 molecule–ABC interactions are very specific, one drug moiety can be a substrate 
of several ABC pumps (8). ABC proteins play a major role in the MDR of HCC 
(9, 10). The drug-resistant HCC cell line Bel7402/5-FU, developed by exposure 
to increasing concentrations of 5-FU, displays a higher expression of P-gp when 
compared with the parental cell line Bel7402. These cells are resistant not only to 
5-FU but also to epirubicin (11). Kong et al. showed that P-gp and BCRP were 
highly expressed in the MDR HCC cells HepG2, which was induced by TGF-β1 
via the SMAD4/HOTAIR/MiR-145 axis. As a result, the concentration of imatinib 
in HepG2 cells was significantly decreased (12). Compared with parental cells, 
P-gp is significantly overexpressed in the sorafenib-resistant HCC cells, HepG2 

Figure 1 Multiple mechanisms of MDR in HCC. Multidrug resistance is a multifactorial 
process. Some of these include enhanced drug efflux, reduced drug intake, alterations in 
tumor microenvironment, impaired autophagy and apoptotic signals, lysosomal 
sequestrations, non-coding RNAs, alterations in drug metabolism, and acquisition of cancer 
stem cell-like phenotypes. CYPs, cytochrome P450 enzymes; GST, glutathione-S-transferase.
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and Huh7. This was partially due to epithelial-mesenchymal transition (EMT) and 
AKT activation. Treatment with the novel allosteric AKT inhibitor MK-2206 
reversed P-gp-mediated MDR via downregulation of phosphorylated AKT (13).

Reduced drug uptake

Drugs are transported across the cells by several mechanisms including passive 
diffusion and facilitated transport. The plasma membrane is an important barrier 
that limits drugs from reaching intracellular compartments. Passive transporters, 
ion-coupled transporters, and exchangers are encoded by genes of the solute car-
rier (SLC) family, which comprises approximately 360 uptake transporters in the 
cell membrane. Factors that downregulate or block the transporters can lead to 
drug resistance through decreased drug uptake or defective endocytic processes 
(14). Compared with non-tumor adjacent tissues, SLC46A3 was downregulated 
in 83.2% of human HCC tissues, and low expression was associated with a more 
aggressive phenotype. Conversely, overexpression of SLC46A3 was demonstrated 
to ameliorate sorafenib resistance, thereby improving the drug response, both in 
vitro and in vivo (15). SLCO1B3 is involved in the uptake of a number of chemo-
therapeutic agents, and its expression is significantly elevated in HCC patients 
with intratumoral cholestasis (16, 17). As a direct target of miRNA122, SLC7A1 
is upregulated in miR122-silenced HCC cells, which is related to sorafenib resis-
tance. Overexpression of miR122 can suppress SLC7A1 levels and render HCC 
cells more sensitive to sorafenib (18). Gao et al. analyzed SLC family genes using 
qPCR array and identified 11 downregulated and 3 upregulated genes in HCC 
specimens, compared with the para-carcinoma tissues from HCC patients who 
underwent surgery. In addition, they found that SLC29A1 was the only gene that 
correlated with poor prognosis and that it was significantly elevated in human 
HCC cell lines and tissues. Knockdown of SLC29A1 decreased the sensitivity of 
HCC cells to 5-FU, cisplatin, and sorafenib in vitro (19).

Drug sequestration

Sequestration of drugs in cellular compartments is an important mechanism of 
chemotherapy resistance. Since drugs used in chemotherapy generally target 
molecules in the nucleus and other subcellular compartments, they must be able 
to achieve sufficient concentrations in these compartments and their microenvi-
ronments (20). Intracellular conditions such as intralumenal pH, electrochemi-
cal potential, lipid compositions, and resident proteins can influence the 
intracellular localization of drugs. Multiple drug sequestration mechanisms may 
be involved in a single MDR cancer cell line, and the phenomena of drug seques-
tration may be more complex than originally thought (21). MDR cell lines show 
an increased capacity to sequester drugs into cytoplasmic compartments, result-
ing in decreased interactions of the drug with its nuclear targets. Colombo et al. 
(22) demonstrated P-gp expression not only on the cell membrane but also on 
lysosomes of six HCC cell lines and reported that cell lines with giant lysosomes 
were more resistant to sorafenib than those with small lysosomes. They con-
cluded that lysosome-associated drug sequestration plays an important role in 
MDR in HCC cells (22). Metallothionein also plays a role in sequestering drugs 
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within a cell. Sorafenib remarkably induces the expression of metallothionein-
1G, which is a critical factor for sorafenib resistance in HCC. Inhibition of 
metallothionein-1G enhances the anticancer activity of sorafenib in vitro and in 
tumor xenograft models (23).

Cellular metabolism

The response to cytotoxic drugs often depends on the metabolic state of the can-
cer cells, and these cells rewire the metabolism of anticancer drugs. Metabolic 
alterations can be influenced by various factors such as oncogenes or tumor 
 suppressor genes and the tumor microenvironment (24–29). Cancer cells that 
are resistant to cisplatin have high levels of reactive oxygen species (30), gluta-
thione (GSH), and glutamate–cysteine ligase catalytic subunit (GCLC) (31, 32). 
Downstream of survival signaling pathways, the Warburg effect, which refers to 
the increased rate of glycolysis in tumorigenic cells, can be observed even in 
conditions of normal oxygen levels. In c-Myc-driven HCC, glucose catabolism 
through glycolysis is elevated via the activation of pyruvate kinase (33). Inhibition 
of glycolysis and increase in oxidative phosphorylation can re-sensitize HCC 
cells to chemotherapeutics such as sorafenib, cisplatin, and isoliensinine (34). 
HIF1α activates the transcription of genes encoding angiogenic cytokines, for 
example, VEGF, and glycolytic enzymes, such as hexokinase 1, hexokinase 2, 
glyceraldehyde-3-phosphate dehydrogenase, and pyruvate kinase. These 
enzymes rewire the metabolism of cancer cells and induce MDR in HCC (35–38). 
Wu et al. showed that ADRB2 pathway regulation leads to HIF1α stabilization, 
reprogramming of glucose metabolism, and resistance of HCC cells to sorafenib 
(39). Drug metabolism enzymes are also involved in the MDR. This process 
includes phase I and phase II enzymes. Phase I of oxidative metabolism is 
 mediated mainly by cytochrome P450 enzymes (CYPs) and epoxide hydrolases. 
Phase II enzymes are involved in conjugation reactions, including glutathionyl-
ation, glucuronidation, and sulfation. These enzymes include glutathione-S-
transferase (GST), UDP-glucuronosyltransferases (UGT), sulfotransferases, and 
arylamine N-acetyltansferases (NAT), which transform the reactive species into 
hydrophilic nontoxic metabolite conjugates. Therapeutic drugs are metabolized 
by CYPs and epoxide hydrolases, which are further conjugated by the phase II 
enzymes and then, in phase III, effluxed by transporters such as the members of 
the ABC transporter family (14). Meena et al. reported that CYP450 and fatty 
acid synthase protein levels were elevated in multidrug-resistant HCC cells, and 
downregulation of these molecules by siRNAs or cerulenin resensitized the cells 
to paclitaxel (40). Further, ciplatin-resistant HCC cell lines have a higher expres-
sion of GST, which can protect cancer cells from being inhibited by anticancer 
drugs (41).

Non-coding RNAs

The term “non-coding RNAs” (ncRNAs) refers to RNAs that do not encode pro-
teins. These include miRNAs, long ncRNAs (lncRNAs), and circular RNAs 
( circRNA) (42). ncRNAs are involved in multiple cellular processes, such as 
 proliferation, migration, apoptosis, angiogenesis, and immune responses (43). 
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A number of studies have highlighted the key roles of ncRNAs in the evolution 
and progression of drug resistance in cancers. They mainly modulate drug 
 transporters, cell cycle-related proteins, apoptotic signals, and the tumor micro-
environment (44). While all ncRNAs potentially play roles in drug resistance in a 
context-specific manner, the major role is played by miRNAs and lncRNAs 
(45, 46). The miRNAs are small (~20 bp) non-coding RNAs, which target specific 
mRNA sequences and inhibit protein translation (47). 

One of the most abundantly expressed miRNA in the liver is miR-122, which 
plays a major role in basic liver function and homeostasis (48, 49). The loss of 
miR-122 is attributed to dysregulation of hepatocyte differentiation, poor progno-
sis, and metastasis of liver cancer. Restoration of miR-122 increased the sensitivity 
of drug-resistant HCC cells to cytotoxic agents through downregulation of MDR-
related genes, and inhibition of cell growth by cell cycle arrest at G0/G1 phase 
(50). Moreover, miRNA microarray data indicate that miR-122 is decreased in 
sorafenib-resistant HCC cells. miR-122 downregulation-mediated activation of 
insulin-like growth factor 1 and subsequent activation of the RAS/RAF/ERK path-
way are thought to be the major mechanisms of resistance (51). He and colleagues 
found that miR-21 was overexpressed in sorafenib-resistant HCC cells, and 
 inhibition of miR-21 with oligonucleotides resensitized these cells to sorafenib 
(52). They concluded that miR-21 participated in the acquired resistance of 
sorafenib by suppressing autophagy through the Akt/PTEN pathway (52). 
Multidrug-resistant Huh-7 cell lines, developed with increasing concentrations 
of doxorubicin, cisplatin, carboplatin, mitomycin C, and vincristine, demon-
strated a significant differential profile of miRNAs when compared with the paren-
tal cell line. miR-27b, miR-181a, miR-146b-5p, miR-181d, and miR-146a were 
the most differentially expressed, and they are thought to play critical roles in the 
acquisition of MDR by regulating PTEN, P53, and KRAS (53).

Apoptotic signals

Apoptosis is involved in the regulation of many physiological and pathological 
processes (54). Disruption of apoptotic signals, one of the hallmarks of cancer, is 
a major obstacle in the success of chemotherapy. In general, there are two apop-
totic pathways: (i) the intrinsic pathway involving the release of cytochrome c 
from mitochondria and (ii) the extrinsic pathway with the activation of death 
receptors. The initiation of these pathways results in the activation of caspases, 
which mediate the cleavage of cellular substrates, leading to morphological and 
biochemical changes that accompany apoptosis (55). DNA damage and oncogene 
activation either induce the accumulation of p53, which causes cell cycle arrest in 
the G1 phase, or trigger apoptosis, depending on the extent of DNA damage. 
Mutation or inactivation of p53 can result in chemotherapy resistance in cancer 
via suppression of apoptotic pathways (10). Zhang et al. reported that cisplatin 
reversed tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) 
resistance in HCC cells, dependent on the status of p53 (56). Modulating the 
expression of p53 and BCL-2 using long interspersed nuclear element-1 ORF-1 
protein led to the resistance of HepG2 cells to cisplatin and epirubicin in vitro 
(57). The BCL-2 family, including pro-apoptotic proteins (BAX, BAK, BID, BAD, 
and PUMA) and anti-apoptotic proteins (BCL-2, BCL-xl, and MCL-1), can 
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regulate apoptosis induced by wild-type p53 in response to stress. Mitochondrial 
pathway-associated chemotherapy resistance is mainly regulated by the BCL-2 
family (14). BCL-2 plays a pivotal role in the glycochenodeoxycholate (GCDA)-
induced chemoresistance, while suppressing the GCDA-stimulated phosphoryla-
tion of BCL-2 significantly attenuates the survival and drug resistance in HCC 
cells (58). Sorafenib-resistant HCC cell lines, including HepG2R and Hep3BR, 
exhibit altered expression of BCL-2 and MCL-1. Navitoclax, an inhibitor of BCL-2, 
can restore the anticancer activity of sorafenib and regorafenib via a mitochondrial 
caspase-dependent mechanism in vitro and in vivo (59).

Tumor microenvironment

Solid tumors are heterogeneous structures. The tumor microenvironment is 
 composed of cancer and stromal cells embedded in extracellular matrix, sustained 
by aberrant vasculature (60, 61). Tumor hypoperfusion, secondary to the hyperper-
meability of the aberrant vasculature, along with low oxygen, depleted  nutrition, 
low pH, and high interstitial pressure can cause chemoresistance (61, 62). Compared 
to normal cells, cancer cells exhibit higher glucose metabolism rates and preferen-
tially utilize glycolysis over oxidative phosphorylation, especially in hypoxic 
 conditions (Warburg effect). This process ultimately generates lactic acid, leading to 
intracellular acidification (63, 64). As a result, cancer cells may express relatively 
more proton pumps in order to maintain intracellular pH homeostasis, rendering 
the extracellular environment highly acidic. According to the ion  trapping theory, 
weakly basic drugs, such as doxorubicin, mitoxantrone, and  vincristine, are ionized 
extracellularly and, as a consequence, lead to chemoresistance (14). Being an anti-
angiogenic agent, sorafenib treatment reduces tumor vessels, prompts hypoxia in 
the tumor microenvironment, and stimulates HIF-mediated cellular responses that 
favor the selection of chemo-resistant cells (65). Hypoxia has been shown to induce 
resistance to sorafenib, 5-FU, gemcitabine, cisplatin, adriamycin, and 6-thioguanine 
in BEL-7402, HepG2, and SMMC-7721 HCC cell lines (66).

Cancer stem cells

Cancer stem cells (CSCs) are a subpopulation of tumor cells with the capacity of 
self-renewal, differentiation, as well as drug resistance (14, 67, 68). CSCs in 
human HCC have been identified and validated through isolation and xeno- 
transplantation experiments in animal models. These cells have pivotal roles in 
the development and progression of HCC (69) as well as chemotherapy resistance 
(66). CSC markers of HCC include epithelial cell adhesion molecule (EpCAM), 
CD133, CD90, CD44, CD24, CD13, deubiquitinating enzyme ubiquitin-specific 
protease 22 (USP22), and oval cell marker OV6. Some of these markers have been 
reported to confer chemoresistance to HCC (2, 70, 71). Multi-signal pathways 
and their cross-talk, including EpCAM, Wnt/β-catenin, Sonic Hedgehog, and 
Notch, are required to maintain the stemness phenotype of HCC CSCs (67). 
CD133+ HCC cells isolated from human HCC cell lines and xenograft mouse 
models were resistant to chemotherapeutics, through the activation of Akt/PKB 
and Bcl-2 pathways (72). Downregulation of USP22 significantly suppressed 
the expression of ABCC1 (MRP1) in an HCC cell line, with validation of the 
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relationship between USP22 and ABCC1 in clinical HCC tissue samples. These 
results suggest that USP22 is associated with the MDR phenotype of BEL-7402/
FU (71). In addition, GSK2879552 and pargyline, inhibitors of lysine-specific 
histone demethylase 1A (KDM1A or LSD1), were demonstrated to alleviate 
acquired resistance to sorafenib through the suppression of the Wnt/β-catenin 
signaling pathway in HCC CSCs (73).

Autophagy

Autophagy is a highly conserved cellular “self-degradative” process, in which 
cytoplasmic components (long-lived or misfolded proteins, protein aggregates, 
and damaged organelles) are degraded and recycled to maintain homeostasis. 
Deficient autophagy is closely related to the development of many diseases 
 including cancer. Autophagy occurs at a basal level in cells and can be induced by 
diverse signals and cellular stressors, including chemotherapeutic agents (74). In 
general, autophagy plays a dual role in the process of MDR in cancers. It not only 
contributes to the development of MDR, but also kills MDR cancer cells in which 
apoptosis pathways are inactive, leading to inconsistence results across studies 
(75, 76). Autophagy inhibitors can increase the sensitivity of HCC cells to cyto-
toxic agents (77). Fan et al. showed that elevated peptidylarginine deiminase IV 
(PADI4) was associated with chemoresistance through autophagy induction in 
HCC in vitro and in vivo. Inhibition of autophagy restored the sensitivity of HCC 
cells to chemotherapy (78). The exact relationship between autophagy and MDR 
in HCC remains unclear and requires further research.

STRATEGIES TO OVERCOME MDR

Extensive studies have been carried out during the last few decades to enhance 
the efficacy of chemotherapy by suppressing or evading the mechanisms of 
MDR. These approaches include the use of MDR modulators or chemosensitiz-
ers (79, 80), improved drug delivery (81, 82), RNAi therapy (83), and natural 
products (84).

MDR modulators or chemosensitizers

MDR modulators or chemosensitizers have been classified into first-generation, 
second-generation, and third-generation on the basis of their affinity for certain 
transporters and effects (5). As P-gp is the most extensively characterized 
 transporter of the ABC superfamily, ways to modulate P-gp have been studied 
extensively. The first-generation P-gp modulators include verapamil, cyclosporine 
A, trifluoperazine, quinidine, progesterone, calmodulin antagonists, and tamoxi-
fen. Kim et al. reported that a high dose of verapamil is required both clinically 
and experimentally to overcome MDR of HCC and that the combination of 
tamoxifen and cyclosporine A showed a significant reduction in the IC50 value of 
doxorubicin in MDR HCC cell lines (85). Due to disappointing therapeutic 
 outcomes and high systemic toxicities, these modulators were replaced with the 
second-generation MDR modulators (86, 87) such as dexverapamil, valspodar, 
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biricodar citrate, and dexniguldipine. Valspodar was shown to improve the anti-
cancer effect of doxorubicin by modulating P-gp in HCC and hepatoblastoma cell 
lines (88). Although the second generation of MDR modulators can inhibit P-gp 
and increase the intracellular accumulation of drugs better than the first- generation 
modulators, there are several disadvantages that limit their clinical application. 
Numerous chemotherapeutics are substrates of both P-gp and cytochrome P450. 
Thus, the combination of anticancer agents with the second-generation MDR 
modulators may lead to unpredictable pharmacokinetic or incorrect dosing of 
chemotherapeutics (5, 89). The third-generation MDR modulators include tariq-
uidar, zosuquidar, laniquidar, elacridar, mitotane, diarylimidazole, and  annamycin. 
Comparative molecular field analysis (CoMFA) and comparative molecular 
 similarity indices analysis (CoMSIA) associated with 3D-quantitiative structure– 
activity relationship (3D-QSAR) studies were performed to aid the research and 
design of the third-generation MDR modulators (90). These modulators are about 
300 times more potent than the first- and second-generation modulators. 
Importantly, these agents do not interact with cytochrome P450 (90, 91). Takahata 
et al. found that breast cancer-resistant protein (BCRP) expression correlated well 
with the chemo-sensitivity of irinotecan hydrochloride (CPT-11) in HCC cell 
lines. Elacridar, an inhibitor of BCRP, enhanced the sensitivity of CPT-11 in BCRP-
overexpressing KYN-2 cells (92).

Enhanced drug delivery

Nanotechnology has the power to deliver anticancer drugs and radically change 
chemoresistance of cancer cells by overcoming MDR (82). There are several drug 
delivery systems including liposomes, dendrimers, polymeric micelles, nanoparti-
cles, polymer–drug/protein–conjugates, and carbon nanotubes. These nano- 
formulations may overcome several challenges in efficient drug delivery such as 
solubility, pharmacokinetic profiles, cellular uptake, bio-distribution patterns, cir-
culation times, and clearance (93). For instance, pluronic P85 can sensitize MDR 
tumors to many chemotherapeutic agents through various mechanisms: (i) mem-
brane fluidization, (ii) ATP depletion, (iii) direct interaction with the ABC efflux 
transporter, (iv) reduction of the GSH/GST detoxification system, (v) drug release 
from acidic vesicles, and (vi) incorporation into the mitochondrial  membrane, 
thereby inhibiting cellular respiration (94). Moreover, all these nanomaterial- based 
drug delivery systems can be conjugated with various kinds of ligands (e.g., pro-
teins, antibodies, and small molecules) producing the so-called actively- targeted 
material that favors drug targeting to specific cell surfaces and thus to specific cell 
populations, leading to a selective and reduced toxicity (82).

Polyethylene glycol (PEG) and polyethylenimine (PEI) co-conjugated ultra-
small nano-graphene oxide (NGO) loaded with C6-ceramide (NGO-PEG-PEI/
Cer) were reported to subvert MDR in HCC cells by inactivating MDR and AKT 
signaling. NGO-PEG-PEI/Cer combined with sorafenib represents a promising 
potential therapeutic strategy for the treatment of drug-resistant HCC (95). HA/
anti-miR-21/PPAuNCs, a nonviral gene delivery system, which condensed anti-
miR-21 into hyaluronic acid-conjugated and PEI-modified PEGylated gold nano-
cages (AuNCs), enhanced intracellular drug accumulation and restored sensitivity 
to doxorubicin in a doxorubicin-resistant HCC cell line through upregulating 
PTEN expression and downregulating P-gp (96). Bmi1 is essential for the survival 
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and proliferation of liver CSCs. Yang et al. demonstrated that Bmi1 siRNA deliv-
ered via cationic nanocapsules of cisplatin (NPC/Bmi1siR) eliminated the side 
population of CD133+ HCC cells dramatically and overcame drug resistance of 
HCC (97).

RNAi therapy

RNA interference (RNAi) is considered a highly specific approach for gene silenc-
ing and has emerged as a novel therapeutic tool for various pathologic conditions, 
including cancers (98,99). RNAi molecules are a group of small regulatory RNAs 
that include miRNAs and small (or short) interfering RNAs (siRNAs). miRNAs are 
endogenous RNAs that are produced from non-coding RNAs, while siRNAs are 
derived from exogenous long dsRNAs (100, 101). In addition, exogenous short 
hairpin RNA precursors that are processed by a distinct cellular machinery to 
form siRNAs can also lead to effective gene silencing (101, 102). These artificially 
generated oligonucleotides mediate gene silencing through post-transcriptional 
mRNA cleavage and decomposition in the cytoplasm, resulting in the knockdown 
of target gene expressions (98, 103). Theoretically, RNAi-based strategies can be 
used in a wide variety of experimental models to target genes that are involved in 
disease processes (103, 104).

Enhancer of zeste homolog 2 (EZH2) is overexpressed in the MDR HCC cell 
line Bel/Fu, and siRNA depletion of EZH2 sensitized these cells to 5-FU by inhib-
iting MDR1 protein expression, promoting apoptosis, and inducing cell cycle 
arrest at G1/S phase (105). It has been reported that MAPK14/Atf2 signaling pre-
dicted a poor response to sorafenib in human HCC. Rudalska et al. demonstrated 
that silencing MAPK14 by shRNA reverted sorafenib resistance in HCC in vitro 
(106). Knockdown of the autophagy-related gene LC3 by RNAi significantly 
enhanced the sensitivity to epirubicin and inhibited proliferation of HepG2 cells 
(107). As silencing a single miRNA may sequentially activate other compensatory 
signaling pathways, a combinatorial approach modulating many miRNAs related 
to a signal pathway may be a promising strategy. The miRNAs miR-21, miR-153, 
miR-216a, miR-217, miR-494, and miR-10a-5p have been shown to be elevated 
in sorafenib-resistant HCC cells. Simultaneous targeting of these miRNAS using 
artificial long non-coding RNAs reversed sorafenib resistance in these cells both in 
vitro and in vivo (108). RNAi, apart from being a potential therapeutic tool, can 
also be used as a tool for biomarker screening for chemotherapy sensitivity. 
Through a high-throughput RNAi screening with 176 shRNA pools against 88 
histone methyltransferases and histone demethyltransferases, Li et al. (109) found 
that silencing of the histone methyltransferases genes, ASH1L, C17ORF49, and 
SETD4, promoted the sensitivity of HepG2 cells to sorafenib.

Natural products

Natural products have attracted increasing attention as anticancer tools. A large 
pool of products with potential functions on reversing MDR have been identified 
and classified (Figure 2) (84, 110). Steroidal saponin from Trillium tschonoskii 
reversed MDR of HCC cell lines in a dose-dependent manner by inhibiting MDR-
related molecules such as MRP1, MRP2, MRP3, MRP5, MVP, and GST-π (111). 
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Treatment of HepG2/ADR cells with rhamnetin, derived from Persian berries, 
reduced the expression of Notch-1, P-gp, and BCRP and increased the susceptibil-
ity of HepG2/ADR cells to sorafenib, etoposide, and paclitaxel (112). Baicalein, 
isolated from Radix scutellariae, increased the intracellular accumulation of 
Rho123 and epirubicin, induced apoptosis and autophagy, decreased the 
 expression of P-gp and Bcl-xl, and reversed MDR in Bel7402/5-FU cells (11). 

Figure 2 Natural products and their potential role in reversing MDR. Experimental data show 
that natural products can reverse MDR via regulating drug efflux, drug metabolism, and 
apoptotic pathways in cancer cells (110).
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Moreover, natural products can also increase the sensitivity of HCC cells to anti-
cancer drugs by regulating cellular metabolism. Li and colleagues demonstrated 
that dauricine dose-dependently suppressed glucose glycolysis and increased oxi-
dative phosphorylation by downregulating the expression of hexokinase 2 and 
pyruvate kinase M2, consequently increasing the sensitivities of HCC to cisplatin, 
sorafenib, and isoliensinie (34).

CONCLUSION

Despite a better understanding of the mechanisms of drug resistance, and the 
experimental approaches that have been taken to overcome drug resistance over 
the decades, clinical utility of these approaches has not come to fruition. To date, 
there is no effective tool to overcome MDR of HCC patients. Among the various 
strategies described to address drug resistance, nanotechnologies appear to offer 
particular advantages with their presumed target-specific delivery of chemothera-
peutics and other conjugated agents. While RNAi can be designed for specific 
targets and used successfully in vitro, the in vivo silencing effects of RNAi are far 
from satisfactory even in highly controlled experimental conditions. Natural 
products can affect multiple targets and pathways with minimal side effects. 
However, the current literature is not sufficient to justify their use in clinical set-
tings. Given that the liver plays a major role in drug metabolism and detoxifica-
tion, and its function is already impaired in HCC patients, any drug combination 
that depends on normal liver metabolism is unlikely to be a successful strategy to 
overcome drug resistance. Taken together, continuous efforts are needed to 
explore the mechanisms in more detail and design novel approaches to overcome 
MDR to improve outcomes for HCC patients.
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